[concours/ex5920] centrale MP 2007 Soient \((A,B)\in\mathscr{M}_n(\mathbf{C})\) et \(f:X\in\mathscr{M}_n(\mathbf{C})\rightarrow AX-XB\in\mathscr{M}_n(\mathbf{C})\).
[concours/ex5920]
Soit \(\lambda\) (resp. \(\mu\)) une valeur propre de \(A\) (resp. \(B\)). Montrer que \(\lambda-\mu\) est valeur propre de \(f\).
Réciproquement, soit \(\alpha\) une valeur propre de \(f\). Montrer qu’il existe une valeur propre \(\lambda\) de \(A\) et une valeur propre \(\mu\) de \(B\) telles que \(\alpha=\lambda-\mu\).
Donner une condition nécessaire et suffisante simple portant sur \(A\) et \(B\) pour qu’il existe \(M\in\mathscr{M}_n(\mathbf{C})\setminus\{0\}\) telle que \(AM-MB=0\).
[concours/ex1055] polytechnique MP 1998 Soient \((A,B)\in\mathscr{M}_n(\mathbf{C})^2\) et \(f\) l’endomorphisme de \(\mathscr{M}_n(\mathbf{C})\) définie par \(M\mapsto AM-MB\).
[concours/ex1055]
Soient \(a\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits A\) et \(b\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits B\). Montrer que \(a-b\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits f\).
Soient \(\lambda\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits f\) et \(N\in E_\lambda(f)\). Montrer que, pour tout \(Q\in\mathbf{C}[X]\), on a \(Q(A)N=NQ(B+\lambda\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_n)\).
En déduire qu’il existe \(a\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits A\) et \(b\in\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits B\) tels que \(\lambda=a-b\).
Condition nécessaire et suffisante pour qu’il existe \(M\neq0\) telle que \(AM=MB\) ?
[planches/ex7328] ccinp PSI 2021
[planches/ex7328]
Énoncer le théorème de Cayley-Hamilton.
Soient \(A\), \(B\), \(C\), dans \(\mathscr{M}_n(\mathbf{C})\). On suppose que \(AC=CB\) et que \(C\neq0\). Montrer que, pour tout \(P\in\mathbf{C}[X]\), \(P(A)C=CP(B)\).
Montrer qu’un produit de matrices est inversible si et seulement si tous ses facteurs le sont. En déduire que \(A\) et \(B\) ont au moins une valeur propre commune.
Réciproquement, si \(A\) et \(B\) ont une valeur propre commune, montrer qu’il existe une matrice \(C\) non nulle telle que \(AC=CB\).
[examen/ex0745] imt PSI 2023 Soient \(A\) et \(B\) deux matrices de \(\mathscr{M}_n(\mathbf{C})\) telles que \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(A)\cap\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(B)=\varnothing\).
[examen/ex0745]
Montrer que \(\chi_A(B)\) est inversible.
On suppose désormais qu’il existe \(M\in\mathscr{M}_n(\mathbf{C})\) tel que \(AM=MB\).
Montrer que, pour tout \(k\in\mathbf{N}\), \(A^kM=MB^k\).
Montrer que, pour tout \(P\in\mathbf{C}[X]\), \(P(A)M=MP(B)\).
Montrer que \(M\) est la matrice nulle.
Dans le cas général, que peut-on dire si l’on a \(M\) non nulle telle que \(AM=MB\) ?
[concours/ex4271] centrale M 1990 Soit \(E\) et \(F\) deux espaces vectoriels de dimension finie, \(f\in\mathscr{L}(E)\), \(g\in\mathscr{L}(F)\). Montrer que, si \(f\) et \(g\) ont une valeur propre commune, alors il existe \(h\in\mathscr{L}(E,F)\), \(h\neq0\), tel que \(hf=gh\). Réciproque ?
[concours/ex4271]
Vous pouvez produire plusieurs PDF en répartissant les exercices choisis