[concours/ex9765] ens paris MP 2009 Pour \(K=\mathbf{C}\), \(\mathbf{R}\) ou \(\mathbf{Q}\), trouver les \(n\) tels qu’il existe \(A\in\mathscr{M}_n(K)\) \(A^2+2A+5I_n=0\).
[concours/ex9765]
[concours/ex8677] mines MP 2008 Condition sur \(n\in\mathbf{N}^*\) pour qu’il existe \(A\in\mathscr{M}_n(\mathbf{R})\) vérifiant : \[A^2+2A+5I_n=0\ ?\]
[concours/ex8677]
[planches/ex2310] mines PC 2017 Soit \(A=\pmatrix{-5&6\cr3&-2}\).
[planches/ex2310]
Montrer que \(A\) est diagonalisable ; préciser ses valeurs propres.
Déterminer les \(B\) telles que \(B^2=A\).
[oraux/ex0028] ccp MP 2010 Soit \(M\) dans \(\mathscr{M}_n(\mathbf{C})\) diagonalisable. Existe-t-il \(A\) dans \(\mathscr{M}_n(\mathbf{C})\) telle que \(A^2=M\) ? Même question en remplaçant \(\mathbf{C}\) par \(\mathbf{R}\).
[oraux/ex0028]
[concours/ex9616] centrale PC 2006 Soient \(E\) un \(\mathbf{C}\)-espace vectoriel de dimension 2 et \(u\in\mathscr{L}(E)\) diagonalisable. Résoudre l’équation \(v^2=u\) d’inconnue \(v\in\mathscr{L}(E)\). L’ensemble des solutions est-il fini ?
[concours/ex9616]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'un concours particulier