[concours/ex5197] escp S 2007 Soit \(A=\left(\begin{array}{cc} -5 & 3\\ 6 & -2\end{array}\right)\).
[concours/ex5197]
Soit \(n\in \mathbf{N}^*\). L’équation \(X^n=A\), d’inconnue \(X\in {\cal M}_2(\mathbf{R})\), admet-elle au moins une solution ?
[concours/ex9765] ens paris MP 2009 Pour \(K=\mathbf{C}\), \(\mathbf{R}\) ou \(\mathbf{Q}\), trouver les \(n\) tels qu’il existe \(A\in\mathscr{M}_n(K)\) \(A^2+2A+5I_n=0\).
[concours/ex9765]
[planches/ex4788] polytechnique, espci PC 2019 Soit \(A\in\mathscr{M}_n(\mathbf{Q})\) telle que \(A^3+2A+2I_n=0\). Montrer que 3 divise \(n\).
[planches/ex4788]
[concours/ex9616] centrale PC 2006 Soient \(E\) un \(\mathbf{C}\)-espace vectoriel de dimension 2 et \(u\in\mathscr{L}(E)\) diagonalisable. Résoudre l’équation \(v^2=u\) d’inconnue \(v\in\mathscr{L}(E)\). L’ensemble des solutions est-il fini ?
[concours/ex9616]
[oraux/ex6914] polytechnique, espci PC 2013 Déterminer les \(M\in\mathscr{M}_2(\mathbf{R})\) telles que \(M^3+2M=\pmatrix{3&5\cr0&-12}\).
[oraux/ex6914]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier