[planches/ex8157] mines MP 2022 Soient \(X\), \(Y\) deux variables indépendantes à valeurs dans \(\mathbf{N}\). On suppose que, pour tout \(k\in\mathbf{N}\), \(\mathbf{P}(Y=k)>0\), et que \(\mathbf{E}(Y)<\infty\). Pour \(n\in\mathbf{N}\), on définit la variable aléatoire \(Z_n\) par \(Z_n(\omega)=X(\omega)\) si \(Y(\omega)\leqslant n\) et \(Z_n(\omega)=Y(\omega)\) sinon. Montrer que la suite \(\mathbf{E}(Z_n)\) possède une valeur maximale pour au plus deux valeurs de \(n\).
[planches/ex8157]
[concours/ex4924] escp S 2001
[concours/ex4924]
Soient deux entiers naturels \(n\) et \(r\) avec \(0\leqslant r\leqslant n\).
On définit la fonction \(F_{r,n}\) sur \(\mathbf{R}\) par : \[\forall x\in\mathbf{R},\quad F_{r,n}(x)=\sum\limits\limits_{k=r}^n{k\choose r} x^k.\]
Montrer que pour tout \(x\) réel, on a \((1-x)F_{r,n}(x)\ =\ xF_{r-1,n-1}(x) - \displaystyle{n\choose r} x^{n+1}\).
Soit \(x\in\left]0,1\right[\) et \(r\in \mathbf{N}\) fixés. Donner un équivalent simple de \(\displaystyle{n\choose r}x^{n+1}\) quand \(n\) tend vers l’infini.
Montrer que pour tout \(x\) tel que \(0<x<1\) et \(r\in\mathbf{N}\) fixés, \(F_{r,n}(x)\) admet une limite lorsque \(n\) tend vers l’infini et déterminer cette limite.
On dispose de deux pièces de monnaie. La première pièce donne « Pile » avec la probabilité \(p\) et la seconde avec la probabilité \(q=1-p\). (\(p\in\left]0,1\right[\)).
on lance la première pièce jusqu’à obtenir pour la première fois « Pile ». Soit \(N\) le nombre de lancers effectués.
On lance alors \(N\) fois la seconde pièce et on note \(X\) la variable aléatoire égale au nombre de « Pile » obtenus durant ces \(N\) tirages.
Déterminer la loi de \(X\).
Calculer son espérance. Commenter les cas où \(p=q=1/2\) et où \(p\) est de la forme \(1/r\).
[probas/ex1099] On lance deux dés. Soit \(X\) la valeur du premier dé et \(Y\) la somme des deux valeurs. Calculer la fonction génératrice des moments conjoints de \(X\) et \(Y\).
[probas/ex1099]
[probas/ex0169] hec 1995 On considère un entier naturel \(n\) non nul, un réel \(p\) de \(\left]0,1\right[\) ; \(X\) est une variable aléatoire avec \(X\hookrightarrow\mathscr{B}(n,p)\).
[probas/ex0169]
Les valeurs prises par \(X\) sont affichées par un compteur défaillant ; lorsqu’il doit afficher 0, il affiche en fait au hasard un nombre compris entre 1 et \(n\) ; sinon il affiche le bon résultat.
Soit \(Y\) la variable aléatoire correspondant au numéro affiché par le compteur. Donner la loi de \(Y\) et \(E(Y)\).
[probas/ex0253] Une urne contient 7 boules rouges et 5 blanches. On choisit au hasard un nombre entier \(N\), \(1\leqslant N\leqslant 5\), puis on tire \(N\) boules de l’urne.
[probas/ex0253]
Calculer l’espérance et la variance du nombre de boules blanches obtenues :
le tirage ayant lieu avec remise ;
le tirage ayant lieu sans remise.
Sachant que l’on a obtenu 3 boules rouges, calculer \(E(N)\) :
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés