[oraux/ex4776] escp S 2012 Une urne contient \(n\) boules numérotées de \(1\) à \(n\) et \(k\) boules bleues non numérotées. Les boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on définit le nombre \(R\) de répétitions de la manière suivante :
[oraux/ex4776]
au début, \(R =0\). Ensuite, on ajoute \(1\) à \(R\) dès que l’on obtient une boule numérotée qui avait été déjà tirée précédemment.
Déterminer les probabilités des événements suivants :
\(A_1=\) « la première boule tirée est la boule numéro \(1\) ».
\(A_2=\) « la première boule tirée est une boule portant un numéro strictement supérieur à \(1\) ».
\(A_3=\) « la première boule tirée est une boule bleue ».
On note \(A_0\) l’événement « la boule numéro \(1\) n’est jamais tirée lors du jeu ». En utilisant la formule des probabilités totales avec les événements précédents, montrer que \(P(A_0) = \displaystyle{k\over k+1}\).
On note \(X\) le nombre de fois où l’on a tiré la boule \(1\) au cours du jeu. En utilisant un raisonnement analogue à celui de la question précédente, montrer que \(E(X) = \displaystyle{1\over k}\).
On définit la variable aléatoire \(Y\) par : \[\cases{\hbox{Si $X\geqslant 1$, alors $Y=X-1$}\cr \hbox{Si $X=0$, alors $Y=0$}\cr}\] (\(Y\) est donc le nombre de répétitions de la boule numérotée \(1\).)
Montrer que \(E(Y) =\sum\limits_{m\geqslant 1} (m-1) P(X = m)\) puis que \(E(Y) = \displaystyle{1\over k(k+1)}\).
Soit \(r\) un entier naturel. On recherche la valeur minimale de \(k\) (en fonction de \(n\) et \(r\)) de manière à ce que le nombre moyen \(t\) de répétitions soit inférieur ou égal à \(r\).
Montrer que \(t = n E(Y)\).
En déduire que la valeur minimale recherchée est \(k_0 = \left\lfloor{\sqrt{\displaystyle{n\over r} + {1\over4}} - \displaystyle{1\over2}}\right\rfloor\).
[probas/ex1467] La loi conjointe de deux variables aléatoires \(X\) et \(Y\) est donnée par le tableau : \[\begin{array}{|c|c|c|c|} \hline X\setminus Y&0&1&2\\\hline 0&1/18&1/9&1/6\\\hline 1&1/9&1/18&1/9\\\hline 2&1/6&1/6&1/18\\\hline\end{array}\] Calculer l’espérance conditionnelle de \(Y\) sachant \(X\), puis de \(X\) sachant \(Y\).
[probas/ex1467]
[probas/ex0241] Une urne contient \(N\) boules numérotées de 1 à \(N\). On effectue \(N\) tirages avec remise et on note \(Z_n\) le nombre de numéros non encore sortis à l’issue du \(n\)-ième tirage.
[probas/ex0241]
Déterminer la loi de \(Z_1\).
Calculer \(E(Z_n)\).
Déterminer la probabilité d’obtenir au \(n\)-ième tirage un numéro qui n’est pas encore sorti.
[planches/ex2857] escp courts S 2018 Soient \(n\) et \(m\) deux entiers tels que \(n\geqslant m\geqslant 1\), et \(p\in\left]0,1\right[\). On considère deux variables aléatoires \(X\) et \(Y\) définies sur le même espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), indépendantes, telles que \(X\hookrightarrow\mathscr{B}(n,p)\) et \(Y\hookrightarrow\mathscr{B}(m,p)\).
[planches/ex2857]
On pose \(D=X-Y\). Donner la loi de \(D\) ; calculer son espérance et sa variance.
[probas/ex2054] On effectue un tirage avec remise de deux nombres entre 1 et 5. Soit \(X=0\) si le premier nombre tiré est pair et \(X=1\) sinon ; et \(Y=1\) si le deuxième nombre est impair et \(Y=0\) sinon. On pose \(Z=X+Y\).
[probas/ex2054]
Donner la loi de \(Z\).
Calculer \(\mathbf{E}(Z)\), et vérifier que \(\mathbf{E}(Z)=\mathbf{E}(X)+\mathbf{E}(Y)\).
Calculer \(\mathbf{V}(X)\), \(\mathbf{V}(Y)\) et \(\mathbf{V}(Z)\), et comparer \(\mathbf{V}(Z)\) à \(\mathbf{V}(X)+\mathbf{V}(Y)\).
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher