[probas/ex2320] Vrai ou faux ?
[probas/ex2320]
Soit \(X\) et \(Y\) deux variables aléatoires admettant une variance.
Alors \(\mathbf{V}(X-Y)=\mathbf{V}(X)-\mathbf{V}(Y)-2\mathop{\mathchoice{\hbox{cov}}{\hbox{cov}}{\mathrm{cov}}{\mathrm{cov}}}\nolimits(X,Y)\).
[planches/ex4055] ccp MP 2018 Soient \(n\in\mathbf{N}\), \(X\) et \(Y\) deux variables aléatoires à valeurs dans \(\{1,\ldots,n+1\}\) telles que, pour tout \((i,j)\in\{1,\ldots,n+1\}^2\), \(\mathbf{P}(X=i,Y=j)=a_{i,j}=\lambda\displaystyle{n\choose i-1}{n\choose j-1}\), où \(\lambda\in\mathbf{R}_+^*\).
[planches/ex4055]
Montrer que \(\lambda=\displaystyle{1\over4^n}\).
Déterminer les lois de \(X\) et de \(Y\).
Les variables \(X\) et \(Y\) sont-elles indépendantes ?
Trouver à l’aide de la variable aléatoire \(X-1\) l’espérance et la variance de \(X\).
On note \(B=(b_{i,j})_{(i,j)\in[[1,n+1]]^2}\in\mathscr{M}_{n+1}(\mathbf{R})\) avec \(b_{i,j}=\mathbf{P}(Y=i|X=j)\).
Calculer \(B^2\) .
Déterminer les valeurs propres de \(B\). La matrice \(B\) est-elle diagonalisable ? Déterminer la dimension des sous-espaces propres associés.
[probas/ex1059] Une bouteille contient initialement \(m\) grandes pilules et \(n\) petites pilules. Chaque jour un patient choisit au hasard une des pilules. S’il choisit une petite pilule, il l’avale. S’il en choisit une grande, il la coupe en deux, il en remet une part (considérée maintenant comme une petite pilule) dans la bouteille et avale l’autre.
[probas/ex1059]
Soit \(X\) le nombre de petites pilules dans la bouteille après que la dernière grande pilule a été choisie et que sa petite moitié a été replacée. Trouver \(E(X)\).
Indication : on pourra définir \(n+m\) variables indicatrices, une pour chaque petite pilule présente initialement et une pour chacune des \(m\) petites pilules crées en coupant une grande.
Soit \(Y\) le jour où la dernière grande pilule est choisie. Trouver \(E(Y)\).
Indication : on pourra chercher une relation entre \(X\) et \(Y\).
[concours/ex9106] hec E 2010 Soit \(X\) une variable aléatoire définie sur un espace probabilisé \((\Omega,\mathscr{A},\mathbf{P})\), qui suit la loi binomiale \(\mathscr{B}(n,p)\), avec \(n\geqslant 2\) et \(0<p<1\).
[concours/ex9106]
On définit sur \((\Omega,\mathscr{A},\mathbf{P})\) une variable aléatoire \(Y\) de la façon suivante :
pour tout \(k\) de \([[1,n]]\), la réalisation de l’événement \([X=k]\) entraîne celle de l’événement \([Y=k]\) ;
la loi conditionnelle de \(Y\) sachant \([X=0]\) est la loi uniforme sur \([[1,n]]\).
Question de cours : Le modèle binomial.
Déterminer la loi de probabilité de \(Y\).
Calculer l’espérance \(\mathbf{E}(Y)\) de \(Y\).
Déterminer la loi de probabilité conditionnelle de \(Y\) sachant \([X\neq0]\).
Calculer l’espérance, notée \(\mathbf{E}(Y/X\neq0)\), de la loi conditionnelle de \(Y\) sachant \([X\neq0]\).
[concours/ex4916] escp S 2001 Soit \(n\) un entier naturel non nul. Une boîte contient \((2n+1)\) jetons bicolores (une face est blanche, l’autre est noire). Les jetons sont numérotés de \(1\) à \(2n+1\) sur leur face blanche, les faces noires ne portant pas de numéro.
[concours/ex4916]
On lance simultanément tous les jetons et on observe leurs faces supérieures.
Une et une seulement des deux couleurs apparaît un nombre impair de fois. Soit \(X\) la variable aléatoire associée à ce nombre.
Déterminer la loi de \(X\).
Calculer son espérance et sa variance.
Suite au lancer, on ramasse les jetons de la couleur apparaissant un nombre impair de fois et on note les numéros de leur face blanche. Soit \(Y\) la variable aléatoire représentant le plus petit de ces nombres.
Soit \(k\in[[0,n]]\), déterminer la loi conditionnelle de \(Y\), conditionnée par l’événement \((X=2k+1)\).
En déduire la loi de \(Y\). Calculer son espérance.
Sur les pages de résultats, vous pouvez modifier l'ordre des énoncés