[planches/ex7292] centrale PC 2021 On dispose d’une pièce donnant Pile avec la probabilité \(p\in\left]0,1\right[\). On lance cette pièce jusqu’à obtenir Pile. Si Pile apparait pour la première fois au \(N\)-ième lancer, on effectue une série de \(N\) lancers avec cette même pièce et on note \(X\) le nombre de Pile obtenus au cours de cette deuxième série de lancers.
[planches/ex7292]
Déterminer la loi de \(N\).
Déterminer la loi du couple \((N,X)\).
Déterminer la loi de \(X\) et son espérance.
[planches/ex2161] mines MP 2017 Soient \(p\in[0,1]\) et \(q=1-p\). On définit \(X\) et \(Y\) des variables aléatoires à valeurs entières telles que, pour tout \((m,n)\in\mathbf{N}^2\), on ait \(\mathbf{P}(X=m,Y=n)=p^2q^{m+n}\).
[planches/ex2161]
Déterminer les lois marginales de \(X\) et de \(Y\). Calculer \(\mathbf{E}(X+Y)\).
Calculer \(\mathbf{P}(X\leqslant k)\) pour \(k\in\mathbf{N}\).
On note \(Z=\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits\{X,Y\}\) et \(T=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits\{X,Y\}\).
Trouver la loi de \(Z\) et calculer son espérance.
Calculer \(\mathbf{E}(|X-Y|)\).
Déterminer la loi de \(T\).
Déterminer la loi de \((X,Z)\) et retrouver la loi de \(Z\).
Déterminer \(\mathbf{P}(X+Y=m)\) pour \(m\in\mathbf{N}\).
[examen/ex1161] ens paris, ens lyon, ens saclay, ens rennes MP 2024 Soient \(E=[\![ 1,n]\!]\) et \(p\in\left]0,1\right[\). Soit \(X\) une variable aléatoire à valeurs dans \(\mathscr{P}(E)\) telle que \(\forall i\in E\), \(\mathbf{P}(i\in X)=p\) et, pour \(i\neq j\in E\), \((i\in X)\) et \((j\in X)\) sont indépendants.
[examen/ex1161]
Pour \(Y\) variable aléatoire de même loi que \(X\) et indépendante de \(X\), calculer \(\mathbf{E}(|X \Delta Y|)\).
[oraux/ex8315] polytechnique MP 2015 Soient \(X\) et \(Y\) deux variables aléatoires définies sur un même espace probabilisé et à valeurs dans \(\mathbf{Z}\). On suppose \(Y\) d’espérance finie.
[oraux/ex8315]
Montrer qu’il existe une fonction \(g:\mathbf{Z}\rightarrow\mathbf{R}\) telle que \(g(X)\) soit d’espérance finie et, pour toute fonction \(f:\mathbf{Z}\rightarrow\mathbf{R}\) bornée, on ait \(\mathbf{E}(Yf(X))=\mathbf{E}(g(X)f(X))\).
Montrer que \(g\) est unique à un ensemble de probabilité nulle (pour la loi de \(X\)) près.
[oraux/ex8353] mines PC 2015 Un QCM comporte 20 questions. Pour chacune des questions, il y a \(k\) réponses possibles. On obtient un point par bonne réponse. On répond au hasard, on note \(X\) le nombre de points obtenus. On nous rend le QCM dans lequel on peut modifier les réponses fausses ; on obtient un demi-point pour chaque nouvelle réponse juste obtenue (réponse au hasard parmi les \((k-1)\) restantes). Soit \(Y\) le nombre de points obtenus la deuxième fois.
[oraux/ex8353]
Déterminer la loi de \(X\).
Déterminer l’espérance de \(Y\). Déterminer \(k\) pour que \(\mathbf{E}(Y)=5\).
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés