[planches/ex0535] centrale MP 2014 (avec Maple)
[planches/ex0535]
Maple
Soit, pour \(x\in I=\left]-\pi/2,\pi/2\right[\), \(\psi(x)=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x}\). On admet que \(\psi\) est développable en série entière autour de 0 sur \(I\), avec un développement de la forme \(\psi(x)=\displaystyle\sum\limits_{n=0}^{+\infty}{E_n\over(2n)\,!}x^{2n}\).
Calculer \(E_n\) pour \(n\in[[0,10]]\). Que remarque-t-on ?
Montrer que \(E_n=(-1)^{n+1}\displaystyle\sum\limits_{k=0}^{n-1}{2n\choose2k}(-1)^kE_k\) (utiliser \(\psi(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x=1\)). En déduire le résultat conjecturé.
On admet que, sur \(I\), \(\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits x=\displaystyle\sum\limits_{k=0}^{+\infty}{F_n\over(2n+1)\,!}x^{2n+1}\).
Montrer que les \(F_n\) sont des entiers strictement positifs (utiliser \(\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits'=1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits^2\)).
Montrer que \(E_{n+1}=\displaystyle\sum\limits_{k=0}^n{2n\choose2k}F_kE_{n-k}\) (utiliser \(\psi'=\psi\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\)). Montrer que \((E_n)\) est une suite strictement croissante d’entiers.
Conjecturer la valeur de \(A_n=\displaystyle\sum\limits_{k=0}^n{2n\choose2k}\) et de \(B_n=\displaystyle\sum\limits_{k=0}^n(-1)^k{2n\choose2k}\), puis démontrer cette conjecture.
[oraux/ex2185] PC 2009 Donner le développement en série entière de \(F:x\mapsto\displaystyle{2x-1\over(2+x-x^2)^2}\).
[oraux/ex2185]
[concours/ex2797] mines M 1994 Étudier la fonction \(f(x)=\sqrt{1+x+x^2}\). Trouver son développement en série entière.
[concours/ex2797]
[series/ex0499] Calculer la série de MacLaurin de \(f(x)=\displaystyle{1\over x^2+x+1}\).
[series/ex0499]
[concours/ex3192] mines M 1993 On pose \(f(x)=\sqrt{1+2x+3x^2}\). Identifier la courbe \(y=f(x)\). Montrer que \(f\) est \(C^\infty\) ; à tout ordre on a donc \[f(x)=\sum\limits_{k=0}^na_nx^n+o(x^n).\] Calculer \(a_0\), \(a_1\), \(a_2\). Trouver une relation de récurrence d’ordre \(2\) linéaire entre les \(a_n\). On pose \[g(x)=\sum\limits_{n=0}^{+\infty}a_nx^n\ ;\] montrer que le rayon de convergence de cette série entière est \(1/\sqrt3\). Montrer que \(g=f\) sur \(\left]-R,R\right[\).
[concours/ex3192]
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés