[planches/ex4585] ens PC 2019 Soit \(\alpha\in\mathbf{C}\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^3+X=\pmatrix{1&\alpha\cr\alpha&1}\).
[planches/ex4585]
[concours/ex5511] polytechnique PC 2007 Soient \(A=\left(\begin{array}{ccc}0&0&0\\1&0&0\\1&1&0\end{array}\right)\) et \(B=\left(\begin{array}{ccc}1&0&0\\1&2&0\\1&1&3\end{array}\right)\). Déterminer les \(X\in\mathscr{M}_3(\mathbf{R})\) telles que \(X^2=A\), puis telles que \(X^2=B\).
[concours/ex5511]
[oraux/ex7379] ens paris MP 2013 Déterminer les matrices \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) telles que \(\forall k\in\mathbf{N}^*\), \(\exists M\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) : \(M^k=A\).
[oraux/ex7379]
[planches/ex2702] ensam PSI 2017
[planches/ex2702]
La matrice \(A=\pmatrix{0&0&1\cr2&1&0\cr0&0&1}\) est-elle diagonalisable ?
Est-elle trigonalisable ? Si oui, la trigonaliser.
Montrer que si \(M^2=A\), alors \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(M)\subset\{-1,0,1\}\).
Résoudre l’équation \(M^2=A\).
[oraux/ex7574] mines MP 2014 Existe-t-il \(M\in\mathscr{M}_4(\mathbf{Q})\) dont \(\sqrt2\) et \(\sqrt3\) est valeur propre et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=1\) ?
[oraux/ex7574]
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de déployer toute sa famille par défaut ou non