[planches/ex2003] mines MP 2017 Soit \(A\in\mathscr{M}_2(\mathbf{R})\). On définit : \(\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(A)=\displaystyle\sum\limits_{n=0}^{+\infty}{(-1)^n\over(2n+1)\,!}A^{2n+1}\). Existe-t-il \(A\in\mathscr{M}_2(\mathbf{R})\) tel que \(\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(A)=\pmatrix{1&1996\cr0&1}\) ? Que dire dans le cas de \(\mathscr{M}_n(\mathbf{R})\) ?
[planches/ex2003]
[planches/ex2004] mines MP 2017 Soient \(n\geqslant 2\), \(A\in\mathscr{M}_n(\mathbf{C})\) nilpotente d’indice \(n\) et \(\lambda\in\mathbf{C}^*\). Montrer qu’il existe \(B\in\mathscr{M}_n(\mathbf{C})\) telle que \(\lambda I_n+A=\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(B)\).
[planches/ex2004]
[oraux/ex7205] mines MP 2015 Trouver les \(A\in\mathscr{M}_n(\mathbf{Z})\) telles que \(4A^3+2A^2+A=0\).
[oraux/ex7205]
[planches/ex3620] mines PSI 2018 Soit \(A\in\mathscr{M}_n(\mathbf{Z})\) telle que \(4A^3+2A^2+A=0\). Montrer que \((A^k)_{k\geqslant 0}\) converge et déterminer sa limite. Qu’en déduire sur \(A\) ?
[planches/ex3620]
[concours/ex6497] polytechnique PC 2006 Condition nécessaire et suffisante sur l’entier \(n\) pour qu’il existe \(M\in\mathscr{M}_n(\mathbf{R})\) vérifiant : \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=0\) et \(M^3-M^2-M-2I_n=0\).
[concours/ex6497]
Vous avez le choix entre plusieurs mises en page des PDF contenant les exercices : testez-les !