[oraux/ex7370] centrale PSI 2016 Soit \(M\in\mathscr{M}_n(\mathbf{C})\) une matrice nilpotente d’indice de nilpotence \(p\).
[oraux/ex7370]
Montrer par deux méthodes que l’on a \(p\leqslant n\).
Trouver une condition suffisante pour qu’il n’existe aucune matrice \(X\in\mathscr{M}_n(\mathbf{C})\) telle que \(X^2=M\).
Montrer qu’il existe \(Y\in\mathscr{M}_n(\mathbf{C})\) telle que \(Y^2=I_n+M\).
[concours/ex8897] polytechnique, espci PC 2010 Soit \(n\in\mathbf{N}\) avec \(n\geqslant 2\). Déterminer les \(A\in\mathscr{M}_2(\mathbf{C})\) telles que \(A^n=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\).
[concours/ex8897]
[concours/ex8555] mines PSI 2006 Existe-t-il \(M\in\mathscr{M}_3(\mathbf{C})\) telle que \(M^2=\left(\begin{array}{ccc}0&0&0\\1&0&0\\1&1&0\end{array}\right)\) ? \(M^2=\left(\begin{array}{ccc}1&0&0\\1&1&0\\1&1&1\end{array}\right)\) ?
[concours/ex8555]
[ev.algebre/ex1111] Soient \(n\in\mathbf{N}^*\), \(N\in\mathscr{M}_n(\mathbf{C})\) nilpotente, \(a\in\mathbf{C}^*\). Montrer qu’il existe \(X\in\mathscr{M}_n(\mathbf{C})\) telle que : \(X^2=aI_n+N\).
[ev.algebre/ex1111]
[oraux/ex3822] mines MP 2011
[oraux/ex3822]
Soit \(n\in\mathbf{N}^*\). Montrer qu’il existe \(P_n\in\mathbf{R}[X]\) tel que \(1+X-(P_n(X))^2\) soit divisible par \(X^n\).
Indication : Utiliser le développement limité en 0 de \(x\mapsto\sqrt{1+x}\).
Soit \(N\in\mathscr{M}_n(\mathbf{R})\) une matrice nilpotente. Montrer qu’il existe \(B\in\mathscr{M}_n(\mathbf{R})\) telle que \(B^2=I_n+N\).
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier