[planches/ex7834] polytechnique PSI 2022 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes suivant la loi géométrique de paramètre \(p\). On pose \(U=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\) et \(V=\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\).
[planches/ex7834]
Trouver les lois de \(U\) et \(V\).
Trouver la loi de \((U,V)\).
Trouver la loi de \(U+V\) et son espérance.
[planches/ex8261] mines PSI 2022 Soient \(X\), \(Y\) des variables aléatoires indépendantes suivant des lois géométriques de paramètres \(p_1\) et \(p_2\). On pose \(M=\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\).
[planches/ex8261]
Justifier que \(M\) est une variable aléatoire.
Déterminer la loi de \(M\).
Déterminer l’espérance et la variance de \(M\) en utilisant \(m=\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\).
[planches/ex7417] ccinp PC 2021 Soient \(X\) et \(Y\) deux variables aléatoires indépendantes de lois géométriques de paramètres respectifs \(p_1\in\left]0,1\right[\) et \(p_2\in\left]0,1\right[\).
[planches/ex7417]
Donner loi et espérance de la variable \(\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits(X,Y)\).
Donner loi et espérance de la variable \(\mathop{\mathchoice{\hbox{max}}{\hbox{max}}{\mathrm{max}}{\mathrm{max}}}\limits(X,Y)\).
[oraux/ex6189] escp S 2015 Soit \(n\) un entier supérieur ou égal à \(2\). On considère une urne contenant \(n\) boules numérotées de \(1\) à \(n\).
[oraux/ex6189]
On effectue des tirages successifs et sans remise d’une boule de cette urne jusqu’à obtenir la boule numérotée \(n\). On note \(X_1\) le nombre de tirages ainsi effectués.
Déterminer la loi de \(X_1\) et son espérance.
Les deux questions suivantes étudient deux prolongements possibles de l’expérience à l’issue de cette première série de tirages.
Après cette première série de tirages, on continue de sortir les boules de l’urne jusqu’à obtenir la boule de plus grand numéro parmi les numéros restants. On note \(X_2\) le nombre de nouveaux tirages ainsi effectués (si à l’issue de la première série de tirages l’urne est vide, on décide que \(X_2\) prend alors la valeur \(0\)).
Déterminer la loi de \(X_2\) et vérifier que \(\sum\limits_{j=0}^{n-1}P(X_2=j)=1\).
Les variables aléatoires \(X_1\) et \(X_2\) sont-elles indépendantes ?
Calculer l’espérance de \(X_2\).
Après cette première série de tirages, s’il reste au moins une boule dans l’urne, on tire une boule au hasard et on note \(X_3\) le numéro obtenu (si l’urne est vide on convient que \(X_3\) prend la valeur \(0\)).
Déterminer la loi du couple \((X_1,X_3)\).
Déterminer la loi de \(X_3\).
[planches/ex7895] polytechnique, espci PC 2022 On lance une pièce équilibrée autant de fois qu’il le faut avant de tomber sur pile. On note \(n\) le nombre total de lancers puis on tire aléatoirement un entier de 1 à \(n\) avec probabilité uniforme. On note \(X\) la variable aléatoire donnant le nombre ainsi tiré.
[planches/ex7895]
Calculer \(\mathbf{P}(X=1)\).
Calculer l’espérance puis la variance de \(X\).
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher