[concours/ex5134] escp B/L 1999 Une urne contient trois jetons numérotés 1, 2, 3 indiscernables au toucher. On effectue une suite de tirages d’un jeton de cette urne, en replaçant à chaque fois le jeton obtenu, avant le tirage suivant.
[concours/ex5134]
On note \(Y\) le nombre aléatoire de tirages juste nécessaire pour obtenir, pour la première fois, deux numéros différents. Déterminer la loi de \(Y\) et son espérance.
On note \(Z\) le nombre aléatoire de tirages juste nécessaire pour obtenir, pour la première fois, les trois numéros.
Déterminer la loi du couple \((Z,Y)\).
Déterminer la loi de \(Z\) et calculer son espérance.
[probas/ex0010] Soit \((X,Y)\) un couple de V.A.R. à valeurs dans \(\mathbf{N}^2\) tel que : \[\forall(j,k)\in\mathbf{N}^2,\quad P([X=j]\cap[Y=k])={j+k\over e\cdot2^{j+k}j\,!\,k\,!}.\]
[probas/ex0010]
Vérifier que l’on a bien défini ainsi la loi de probabilité de \((X,Y)\).
Calculer \(E(2^{X+Y})\).
[oraux/ex6074] escp S 2014 Soit \(X\) une variable aléatoire définie sur un espace probabilisé \((\Omega, \mathscr{A}, P)\) admettant un moment d’ordre \(2\).
[oraux/ex6074]
Déterminer la valeur qui minimise l’application définie sur \(\mathbf{R}\) par \(x\mapsto E((X-x)^2)\), où \(E\) désigne l’opérateur espérance.
Dans la suite de l’exercice, on considère un ensemble fini \(\Omega=\{x_1, x_2, \ldots, x_n\}\) et \((\Omega, \mathscr{P}(\Omega), P)\) un espace probabilisé de support \(\Omega\).
Soit \(X\) une variable aléatoire définie sur cet espace. Pour tout réel \(t\), on définit l’application \(P_t~: \Omega \rightarrow \mathbf{R}\) par : \[\hbox{pour tout }A\in\mathscr{P}(\Omega),\ P_t(A)={E({\bf 1}_A\, e^{tX})\over E(e^{tX})}\] où \({\bf 1}_A\) est la fonction indicatrice de l’ensemble \(A\).
Montrer que l’on définit ainsi une probabilité sur \(\Omega\) et que pour tout \(\omega\in \Omega\) : \[P_t(\omega)={P(\omega)e^{tX(\omega)}\over E(e^{tX})}\]
Soit \(Y\) une variable aléatoire définie sur \((\Omega,\mathscr{P}(\Omega),P_t)\). Calculer \(E_t(Y)\).
Que peut-on dire de \(E_t(Y)\) si \(X\) et \(Y\) sont indépendantes ?
Dans cette question \(\Omega=\{0, 1, \ldots, n\}\) et \(X\) suit la loi binomiale de paramètres \(n\) et \(p\). On pose \(Y=2^X\). Calculer \(E_t(Y)\).
On revient au cas général. À l’aide de la question préliminaire, montrer que : \[E_t((X-E_t(X))^2) \leqslant{1\over4}\left(\mathop{\mathchoice{\hbox{sup}}{\hbox{sup}}{\mathrm{sup}}{\mathrm{sup}}}\limits_{\omega\in\Omega}X(\omega)- \mathop{\mathchoice{\hbox{inf}}{\hbox{inf}}{\mathrm{inf}}{\mathrm{inf}}}\limits_{\omega \in \Omega} X(\omega)\right)^2\]
[probas/ex0143] On dispose d’un dé cubique normal, d’une urne \(A\) contenant 2 boules blanches et 4 noires et d’une urne \(B\) contenant 3 boules blanches et 4 rouges. Les tirages ont lieu sans remise. Soit \(X\) la variable aléatoire égale au nombre obtenu sur le dé. Si \(X\) est divisible par 3, on tire deux boules de l’urne \(A\). Sinon, on tire \(X\) boules de l’urne \(B\). Soit \(Y\) le nombre de boules blanches obtenues.
[probas/ex0143]
Déterminer la loi de \(Y\), son espérance mathématique et sa variance.
[probas/ex0008] Dans un casino, un croupier mélange trois cartes : As de cœur, Roi de cœur, Valet de pique et les présente face cachée sur une table. Un joueur choisit l’une de ces trois cartes au hasard. Si c’est un cœur, il gagne 1€ si c’est l’As, 2€ si c’est le Roi et le jeu recommence. Si c’est le Valet de pique, le jeu s’arrête.
[probas/ex0008]
On note \(N\) le nombre de cartes tirées avant l’apparition du Valet de pique et \(S\) la somme gagnée (en €).
Déterminer la loi de \(N\). Quelle est la probabilité que le Valet de pique ne soit jamais tiré ?
Déterminer la loi de \(S\) sachant \([N=n]\).
Quel prix minimum le casino soit-il faire payer une partie pour ne pas être perdant en moyenne ?
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces