[geo.diff/ex0033] Soit \(\Gamma\) la courbe décrite par \(M(t)\) : \(x=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3t\), \(y=a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3t\) (\(a>0\)). Le but de cet exercice est de déterminer une équation polaire de l’ensemble \((R)\) des points d’où on peut mener deux tangentes à \(\Gamma\) orthogonales.
[geo.diff/ex0033]
Trouver une équation normale de la tangente \(\Delta(t)\) en \(t\) à \(\Gamma\). Préciser modulo \(\pi\) l’angle orienté \(\alpha(t)\) entre \(Ox\) et \(\Delta(t)\). A quelle condition \(\Delta(t)\) et \(\Delta(u)\) sont-elles orthogonales ?
Calculer l’affixe du point d’intersection \(N(t)\) de \(\Delta(t)\) et de \(\Delta(t-\pi/2)\). En déduire une équation polaire de \((R)\). Représenter \(\Gamma\) et \((R)\).
On pose \(t_0=\displaystyle{1\over2}\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits 2\). Montrer que les réels \(t\) tels que \(N(t)=M(t)\) se déduisent simplement de \(t_0\). Montrer qu’en un tel point, \(\Gamma\) et \((R)\) sont tangentes.
[geo.diff/ex0089]
Soit \(a\in\mathbf{R}_+^*\). Tracer la courbe \(C\) de représentation paramétrique : \[\left\{\begin{array}{rcl} x&=& a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3t\\ y&=& a\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3t,\end{array}\right.\] appelée astroïde.
Déterminer et tracer la courbe orthoptique de \(C\), c’est-à-dire l’ensemble des points d’où l’on peut mener (au moins) deux tangentes à \(C\) orthogonales.
[concours/ex0986] centrale MP 1997 Une cardioïde roule sans glisser sur une droite. Trouver la trajectoire de son point de rebroussement.
[concours/ex0986]
[geo.diff/ex0038] Soit la courbe \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over\theta}\).
[geo.diff/ex0038]
On considère une droite passant par \(O\). Montrer que les tangentes à \(\Gamma\) aux points de \(\Gamma\) situés sur \(\Delta\) passent par un même point \(P\). Ensemble décrit par \(P\) lorsque \(\Delta\) varie ?
[geo.diff/ex0439] Trouver les points d’intersection des courbes \(r=\sqrt2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\) et \(r^2=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\).
[geo.diff/ex0439]
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats