[oraux/ex1665] mines MP 2009 On considère la cardioïde d’équation : \(\rho=a(1+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\). Calculer la distance de l’origine à la normale en un point de la courbe.
[oraux/ex1665]
[geo.diff/ex0143] Pour \((a,b,n)\in\mathbf{R}\times\mathbf{R}\times(\mathbf{N}\setminus\{0,1\})\), montrer que les points d’inflexion de la courbe d’équation polaire : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits n\theta+a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+b\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\] sont alignés.
[geo.diff/ex0143]
[geo.diff/ex0146]
Tracer \((C)\) : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\displaystyle{\theta\over3}}\).
Une droite \((D_\theta)\), passant par \(O\) et d’angle polaire \(\theta\), coupe \((C)\) en trois points. Montrer que les tangentes à \((C)\) en ces trois points forment un triangle équilatéral.
[oraux/ex1713] mines MP 2010 Étudier la courbe \(\mathscr{C}\) d’équation polaire \(\rho=a(a-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta)\), où \(a>0\). Une droite \(\mathscr{D}\) passant par l’origine coupe \(\mathbf{C}\) en deux points \(P\) et \(Q\). On note \(I\) le milieu de \([PQ]\). Déterminer le lieu de \(I\) lorsque \(\mathscr{D}\) varie.
[oraux/ex1713]
[oraux/ex3668] polytechnique MP 2011 On munit \(\mathbf{R}^2\) de sa structure euclidienne canonique. Soient \(A\) et \(B\) deux points de \(\mathbf{R}^2\), \(O\in[A,B]\), \(n=OA\), \(m=OB\), \(a\in\left]0,\mathop{\mathchoice{\hbox{min}}{\hbox{min}}{\mathrm{min}}{\mathrm{min}}}\limits\{n,m\}\right[\) et \(K\) le disque fermé de centre \(O\) et de rayon \(a\). Déterminer les points \(M\) de \(K\) tels que \(\displaystyle{n^2\over AM}+{m^2\over BM}\) soit minimal.
[oraux/ex3668]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier