[geo.diff/ex0027] Soient \(F\) et \(F\,'\) deux points distincts du plan avec \(FF\,'=2c\). Soit \(\mathscr{L}\) l’ensemble des points \(M\) tels que \(FM\times F\,'M=c^2\). Donner une équation cartésienne, puis une équation polaire de \(\mathscr{L}\) dans un repère convenable.
[geo.diff/ex0027]
[oraux/ex9456] centrale PSI 2013 Dans \(\mathbf{R}^2\) muni de sa structure euclidienne canonique usuelle, on note \(A(1,0)\) et \(B(-1,0)\). Étudier \(\mathscr{C}=\{M\in\mathbf{R}^2,\ AM\times BM=1\}\).
[oraux/ex9456]
[geo.diff/ex0424] Tracer la courbe \(r^2=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\).
[geo.diff/ex0424]
[geo.diff/ex0189] Étude de la courbe définie par l’équation polaire : \[\rho=a\sqrt{2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta},\quad\hbox{où}\quad a\in\mathbf{R}_+^*.\]
[geo.diff/ex0189]
[geo.diff/ex0419] Tracer la courbe \(r^2=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\).
[geo.diff/ex0419]
[geo.diff/ex0418] Tracer la courbe \(r=1+2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0418]
[geo.diff/ex0421] Tracer la courbe \(r=1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0421]
[geo.diff/ex0427] Tracer la courbe \(r=4-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0427]
[geo.diff/ex0423] Tracer la courbe \(r=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0423]
[geo.diff/ex0432] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^2\displaystyle{\theta\over2}\).
[geo.diff/ex0432]
[geo.diff/ex0425] Tracer la courbe \(r=4+2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\).
[geo.diff/ex0425]
[geo.diff/ex0192] Si \(a>0\) et \(L\in\{a,a/2\}\), étude de la courbe d’équation polaire \(\rho=a\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+L\).
[geo.diff/ex0192]
[geo.diff/ex0422] Tracer la courbe \(r=1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0422]
[geo.diff/ex0040] Construire la courbe \(\rho=1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
[geo.diff/ex0040]
On précisera le point double et l’asymptote.
[oraux/ex1466] centrale 2004 Construire la courbe d’équation polaire \(\rho=1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\displaystyle{\theta\over2}\).
[oraux/ex1466]
[geo.diff/ex0135] Construire la courbe suivante, définie en coordonnées polaires : \[\rho=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits{\theta\over2}-1.\]
[geo.diff/ex0135]
[geo.diff/ex0278] Tracer la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits3\theta\).
[geo.diff/ex0278]
[geo.diff/ex0433] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\theta\).
[geo.diff/ex0433]
[concours/ex1322] mines PC 1998 Étudier la courbe d’équation polaire \(\rho=\displaystyle{\theta\over\theta-1}\).
[concours/ex1322]
[geo.diff/ex0092] Tracer la courbe \(C\) suivante, définie en polaires par : \[\rho=\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits{2\theta\over3}.\]
[geo.diff/ex0092]
[geo.diff/ex0275] Construire la courbe \(r=\displaystyle{1+2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[geo.diff/ex0275]
[oraux/ex1532] centrale PC 2005 Étudier la courbe d’équation polaire : \(\rho=1/\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits3\theta\).
[oraux/ex1532]
[concours/ex3244] mines M 1993 Construire la courbe en polaires \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1+2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[concours/ex3244]
[geo.diff/ex0197] Étude de la courbe définie en polaires par : \[\rho=e^\theta-1.\]
[geo.diff/ex0197]
[geo.diff/ex0032] Étudier l’arc \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta}\).
[geo.diff/ex0032]
Préciser branches infinies, inflexions, points doubles.
[geo.diff/ex0130] Construire la courbe suivante, définie en coordonnées polaires : \[\rho={\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}.\]
[geo.diff/ex0130]
[geo.diff/ex0198] Étude de la courbe définie en polaires par : \[\rho={\theta+1\over\theta-1}.\]
[geo.diff/ex0198]
[geo.diff/ex0193] Étude de la courbe définie par l’équation polaire \(\rho=-a\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^2\theta\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\), où \(a\in\mathbf{R}_+^*\).
[geo.diff/ex0193]
[geo.diff/ex0041] Construire la courbe \(\rho=\displaystyle{1+2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1+2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[geo.diff/ex0041]
Préciser asymptotes et points doubles.
[geo.diff/ex0251] Soit \(\Gamma\) la courbe d’équation polaire \(\rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta+\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\displaystyle{\theta\over2}\).
[geo.diff/ex0251]
Étudier et tracer \(\Gamma\), on précisera les tangentes à \(\Gamma\) aux points d’angles polaires \(0\), \(\displaystyle{\pi\over2}\), \(\displaystyle{3\pi\over2}\), \(\displaystyle{2\pi\over3}\), \(\pi\), \(2\pi\).
[geo.diff/ex0091] Tracer la courbe \(C\) suivante, définie en polaires par : \[\rho={1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta}.\]
[geo.diff/ex0091]
[geo.diff/ex0250] Soit \(\Gamma\) la courbe d’équation polaire \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
[geo.diff/ex0250]
Étudier et tracer \(\Gamma\), on précisera ses asymptotes et sa position par rapport à ces dernières.
[planches/ex5310] mines PC 2019 Soient \(\mathscr{C}\) un cercle de rayon \(r>0\) et \(A\) un point de \(\mathscr{C}\). On note \(\Sigma\) l’ensemble des projetés orthogonaux de \(A\) sur les droites tangentes à \(\mathscr{C}\). Étudier \(\Sigma\). Faire un dessin.
[planches/ex5310]
[geo.diff/ex0190] Étude de la courbe définie par l’équation polaire \(\rho=\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\displaystyle{2\theta\over3}\).
[geo.diff/ex0190]
[concours/ex0301] mines MP 1996 Déterminer la solution \(u\) de \(\rho''+\rho=\displaystyle{2\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits^3\theta}\) telle que \(u\left(\displaystyle{\pi\over2}\right)=3\) et \(u'\left(\displaystyle{\pi\over2}\right)=2\sqrt3\). Tracer la courbe d’équation polaire \(\rho=u(\theta)\).
[concours/ex0301]
[oraux/ex9496] mines MP 2014 Soit \(\mathscr{C}\) la courbe polaire d’équation \[r(\theta)=a{(1-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta)\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}.\]
[oraux/ex9496]
Tracer la courbe. En déterminer une équation cartésienne.
Calculer l’aire de la boucle délimitée par le point double.
[oraux/ex1711] mines MP 2010 Étudier la courbe d’équation polaire : \(\rho=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta/3)}\).
[oraux/ex1711]
[concours/ex2958] ccp M 1994 Construire la courbe d’équation polaire : \[\rho=\displaystyle{\theta+1\over\theta-1}.\] Étudier ses points d’inflexion.
[concours/ex2958]
[oraux/ex9458] centrale PC 2013 Soit \(\mathscr{C}\) la courbe d’équation polaire \(r=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\). Tracer \(\mathscr{C}\). Déterminer la limite de \(y(\theta)^2/x(\theta)\) quand \(\theta\rightarrow0\). En déduire une parabole asymptote à la courbe.
[oraux/ex9458]
[oraux/ex1541] tpe PSI 2005 Tracer la courbe définie en coordonnées polaires par \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\over1-2\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta}\).
[oraux/ex1541]
[geo.diff/ex0420] Tracer la courbe \(r=\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\).
[geo.diff/ex0420]
[concours/ex4180] mines M 1990 Construire la courbe d’équation polaire : \(\rho=\displaystyle{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-1}\).
[concours/ex4180]
[geo.diff/ex0459] Tracer le graphe de \(r^2=1+\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\).
[geo.diff/ex0459]
[geo.diff/ex0134] Construire la courbe suivante, définie en coordonnées polaires : \[\rho={\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits2\theta\over2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta-1}.\]
[geo.diff/ex0134]
[oraux/ex5879] ccp PSI 2012 Étudier les courbes en polaires vérifiant : \(\forall \theta\in\mathbf{R}\), \(\rho (\theta)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta +\rho'(\theta)\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta =0\).
[oraux/ex5879]
[concours/ex3344] centrale M 1993 Étude et tracé de la courbe de représentation polaire \(\rho=\displaystyle{a\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits^3\theta}\).
[concours/ex3344]
[oraux/ex1649] polytechnique MP 2009 Soit \(E=\left\{z+\displaystyle{z^2\over2},\ z\in\mathbf{C}\hbox{ et }|z|\leqslant 1\right\}\). Représenter \(E\) et calculer son aire.
[oraux/ex1649]
[concours/ex3899] ensi M 1992 Tracer et étudier la courbe définie en polaires par : \[\rho=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left|\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta\right|.\]
[concours/ex3899]
[geo.diff/ex0188] Étude de la courbe définie par l’équation polaire \(\rho=\theta\).
[geo.diff/ex0188]
[oraux/ex3670] polytechnique MP 2011 Tracer la courbe d’équation polaire \(r(\theta)=\displaystyle{1\over2}+\sum\limits_{k=1}^\infty{(-1)^{k-1} \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(3k\theta)\over(3k+1)(3k-1)}\).
[oraux/ex3670]
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés