[series/ex0421] Trouver les cinq premiers termes de la série entière \(e^x\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\) en multipliant des séries entières.
[series/ex0421]
[series/ex0422] Trouver les cinq premiers termes de la série entière \(e^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\).
[series/ex0422]
[planches/ex0598] ccp PSI 2015 Donner le développement en série entière en 0 et le rayon de convergence de \(x\mapsto x\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits(x+1)\).
[planches/ex0598]
[concours/ex6122] centrale PC 2007 Soit \(f:x\mapsto\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits(1/(1+x))\).
[concours/ex6122]
Étudier \(f\). Trouver une fonction \(g\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) qui coïncide avec \(f\) sur \(\left]-1,+\infty\right[\).
Trouver \((a,b)\in\mathbf{C}^2\) tel que : \[\forall x\in\mathbf{R}\qquad g'(x)=\displaystyle{a\over1+x/(1-i)}+{b\over1+x/(1+i)}.\]
En déduire que \(g\) est développable en série entière au voisinage de 0. Donner son rayon de convergence.
En déduire un développement en série entière de \(g\).
[oraux/ex2037] saint-cyr MP 2005 Soit \(f(x)=\displaystyle{1\over1-6x-x^2}\). Montrer que \(f\) est développable en série entière sur un voisinage de l’origine et calculer les coefficients de son développement.
[oraux/ex2037]
Vous pouvez limiter le nombre de résultats d'une requête, pour en accélérer l'affichage