[concours/ex2598] tpe, int, ivp M 1995 Développer en série entière \(e^{-x}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\).
[concours/ex2598]
[oraux/ex1923] mines 2003 Développer en série entière, de deux façons : \(e^{-x}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\).
[oraux/ex1923]
[planches/ex8425] mines PC 2022
[planches/ex8425]
Développer \(f:x\longmapsto e^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\) en série entière de deux façons différentes.
En déduire, pour \(n\in\mathbf{N}\), l’égalité \(\displaystyle\sum\limits_{k=0}^{\lfloor(n-1)/2\rfloor}{(-1)^k\over(2k+1)\,!\,(n-k)\,!}={(\sqrt2)^n\over n\,!}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\left({n\pi\over4}\right)\).
[planches/ex0536] centrale PC 2014 Montrer que la fonction \[f:x\mapsto e^x\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\] est développable en série entière sur un voisinage de 0. Donner ce développement.
[planches/ex0536]
[series/ex0422] Trouver les cinq premiers termes de la série entière \(e^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\).
[series/ex0422]
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés