[series/ex0496] Calculer la série de MacLaurin de \(\displaystyle\int\sqrt{1+x^3}\,dx\).
[series/ex0496]
[planches/ex0486] télécom MP 2013 Donner le développement en série entière de \(x\mapsto\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left(\displaystyle{x+1\over x+2}\right)\).
[planches/ex0486]
[oraux/ex2170] centrale PC 2009 Soit \(f:x\mapsto\displaystyle{\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits(x^2)\over x^2}\). Montrer que \(f\) est croissante sur \(\mathbf{R}_+^*\). Donner son développement en série entière au voisinage de 0.
[oraux/ex2170]
[examen/ex1369] polytechnique MP 2024 Montrer que, pour tous \(r\in\left]0,1\right[\) et \(\theta\in\mathbf{R}\), \[\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left|{1-re^{i\theta}}\right|=-\sum\limits_{n=1}^{+\infty}\frac{r^n}{n}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(n\theta).\]
[examen/ex1369]
[examen/ex1755] mines MP 2024 Soit \(f:z\in\mathbf{C}\setminus\{1\}\mapsto\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\frac{z}{1-z}\right)\).
[examen/ex1755]
Montrer que \(f\) est développable en série entière au voisinage de 0 et donner son rayon de convergence.
On écrit \(f(z)=\displaystyle\sum\limits_{n=0}^{+\infty}a_nz^n\).
Donner une expression sommatoire des \(a_n\).
Trouver une relation de récurrence vérifiée par la suite \((a_n)\).
Donner un développement asymptotique de \(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(a_n)\).
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés