[series/ex0407] Trouver une série entière de somme \(\displaystyle{4x\over1+2x-3x^2}\).
[series/ex0407]
[series/ex0431] Calculer les quatre premiers termes non nuls de la série entière \(\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over1-x}\).
[series/ex0431]
[examen/ex0276] mines PC 2023 Pour \(z\in\mathbf{C}\) tel que \(|z|<1\), on pose \(L(z)=\displaystyle\sum\limits_{n=1}^{+\infty}(-1)^{n-1}\frac{z^n}{n}\). Montrer que, pour \(|z|<1\), \(L(z)=\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(|1+z|)+i\displaystyle\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits\left(\frac{\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(z)}{1+\mathop{\mathchoice{\hbox{Re}}{\hbox{Re}}{\mathrm{Re}}{\mathrm{Re}}}\nolimits(z)}\right)\).
[examen/ex0276]
Indication : Considérer \(f_z:t\in[0,1]\mapsto L(tz)\).
[series/ex0429] Soit \(f(x)=\displaystyle\sum\limits_{n=0}^\infty a_nx^n\). Montrer que : \[{1\over 1-x}\,f(x)=\sum\limits_{n=0}^\infty(a_0+a_1+\cdots+a_n)\,x^n.\]
[series/ex0429]
[examen/ex1369] polytechnique MP 2024 Montrer que, pour tous \(r\in\left]0,1\right[\) et \(\theta\in\mathbf{R}\), \[\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left|{1-re^{i\theta}}\right|=-\sum\limits_{n=1}^{+\infty}\frac{r^n}{n}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(n\theta).\]
[examen/ex1369]
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de déployer toute sa famille par défaut ou non