[oraux/ex3933] mines MP 2011 Soit \(\alpha\in\mathbf{R}\). Trouver le domaine de définition puis développer en série entière au voisinage de 0 la fonction \(f:x\mapsto\displaystyle{1\over1-2x\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\alpha+x^2}\).
[oraux/ex3933]
[planches/ex0593] centrale PC 2015 Soit \(g:x\mapsto\displaystyle{\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-x)\over1-x}\).
[planches/ex0593]
Montrer que \(g\) est développable en série entière au voisinage de 0. Donner une expression de ce développement faisant intervenir \(H_n=\displaystyle\sum\limits_{k=1}^n{1\over k}\). On pose \(g(x)=\displaystyle\sum\limits_{k=0}^{+\infty}b_nx^n\).
Déterminer le rayon de convergence \(R\) de cette série entière.
Quel est le mode de convergence sur \([-R,0]\) ?
Déterminer \(\displaystyle\sum\limits_{n=0}^{+\infty}{(-1)^{n+1}H_n\over n+1}\).
[series/ex0430] Donner la série entière \(\displaystyle{\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-x)\over1-x}\).
[series/ex0430]
[concours/ex7131] ccp MP 2005
[concours/ex7131]
Décomposer \(f(x)=\displaystyle{1\over(1+x)((2-x)}\) en éléments simples.
La fonction \(f\) est-elle développable en série entière ?
Donner un développement de \(f\) à l’ordre 3 en 0.
[oraux/ex2089] polytechnique, espci PC 2008
[oraux/ex2089]
Factoriser \(P(X)=X^2-2\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits aX+1\) sur \(\mathbf{R}[X]\).
Décomposer \(\displaystyle{1\over P(X)}\) en éléments simples.
Décomposer en série entière en 0 la fonction \(x\mapsto\displaystyle{1\over P(x)}\). Donner son rayon de convergence.
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de quelle façon sont affichées les solutions