[series/ex0496] Calculer la série de MacLaurin de \(\displaystyle\int\sqrt{1+x^3}\,dx\).
[series/ex0496]
[planches/ex2253] mines PSI 2017 Soit \(\alpha\in\mathbf{R}_+^*\). Donner le développement en série entière de \(f:x\longmapsto\displaystyle{(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\alpha)x\over x^2-2(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\alpha)x+1}\).
[planches/ex2253]
[concours/ex3864] ensi M 1992 Développer en série entière : \[x\longmapsto\int_0^x{e^t-1\over t}\,dt.\]
[concours/ex3864]
[planches/ex0484] ensai MP 2013 Donner le développement en série entière au voisinage de 0 de : \[x\mapsto\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-x+x^2).\]
[planches/ex0484]
[planches/ex5099] mines PSI 2019 Soit \(f:x\in\mathbf{R}\longmapsto\displaystyle{e^x\over4}+{3e^{-x}\over4}+{xe^x\over2}\).
[planches/ex5099]
Justifier que \(f\) est développable en série entière sur \(\mathbf{R}\).
On note alors \(f(x)=\displaystyle\sum\limits_{n=0}^{+\infty}a_nx^n\). Démontrer que, pour tout entier \(n\geqslant 2\), \(a_n\neq0\) et que \(\displaystyle{1\over a_n}\in\mathbf{N}\).
Vous pouvez choisir la fonte des exercices lors de la compilation des PDF