[planches/ex8425] mines PC 2022
[planches/ex8425]
Développer \(f:x\longmapsto e^x\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\) en série entière de deux façons différentes.
En déduire, pour \(n\in\mathbf{N}\), l’égalité \(\displaystyle\sum\limits_{k=0}^{\lfloor(n-1)/2\rfloor}{(-1)^k\over(2k+1)\,!\,(n-k)\,!}={(\sqrt2)^n\over n\,!}\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\left({n\pi\over4}\right)\).
[planches/ex0536] centrale PC 2014 Montrer que la fonction \[f:x\mapsto e^x\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x\] est développable en série entière sur un voisinage de 0. Donner ce développement.
[planches/ex0536]
[oraux/ex2100] mines MP 2008 Développer \(\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits(1+t)\) en série entière autour de 0.
[oraux/ex2100]
[concours/ex6122] centrale PC 2007 Soit \(f:x\mapsto\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits(1/(1+x))\).
[concours/ex6122]
Étudier \(f\). Trouver une fonction \(g\in\mathscr{C}^\infty(\mathbf{R},\mathbf{R})\) qui coïncide avec \(f\) sur \(\left]-1,+\infty\right[\).
Trouver \((a,b)\in\mathbf{C}^2\) tel que : \[\forall x\in\mathbf{R}\qquad g'(x)=\displaystyle{a\over1+x/(1-i)}+{b\over1+x/(1+i)}.\]
En déduire que \(g\) est développable en série entière au voisinage de 0. Donner son rayon de convergence.
En déduire un développement en série entière de \(g\).
[planches/ex0593] centrale PC 2015 Soit \(g:x\mapsto\displaystyle{\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(1-x)\over1-x}\).
[planches/ex0593]
Montrer que \(g\) est développable en série entière au voisinage de 0. Donner une expression de ce développement faisant intervenir \(H_n=\displaystyle\sum\limits_{k=1}^n{1\over k}\). On pose \(g(x)=\displaystyle\sum\limits_{k=0}^{+\infty}b_nx^n\).
Déterminer le rayon de convergence \(R\) de cette série entière.
Quel est le mode de convergence sur \([-R,0]\) ?
Déterminer \(\displaystyle\sum\limits_{n=0}^{+\infty}{(-1)^{n+1}H_n\over n+1}\).
Vous pouvez choisir d'afficher tous les résultats d'une requête de façon individuelle, ou en les regroupant par familles d'exercices