[planches/ex2253] mines PSI 2017 Soit \(\alpha\in\mathbf{R}_+^*\). Donner le développement en série entière de \(f:x\longmapsto\displaystyle{(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\alpha)x\over x^2-2(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\alpha)x+1}\).
[planches/ex2253]
[concours/ex3864] ensi M 1992 Développer en série entière : \[x\longmapsto\int_0^x{e^t-1\over t}\,dt.\]
[concours/ex3864]
[planches/ex0640] mines PC 2016 Développer en série entière au voisinage de 0 la fonction : \[f:x\longmapsto\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left(1+{x^2\over1+x}\right).\]
[planches/ex0640]
[series/ex0431] Calculer les quatre premiers termes non nuls de la série entière \(\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over1-x}\).
[series/ex0431]
[planches/ex5480] centrale PC 2019 (avec Python)
[planches/ex5480]
Python
Pour \((p,q)\in\mathbf{R}^2\), on note \(a_{p,q}(n)\) le coefficient de \(X^n\) du polynôme \((X^2+pX+q)^n\). On pose \(f_{p,q}(x)=\displaystyle\sum\limits_{n=0}^{+\infty}a_{p,q}(n)x^n\).
Montrer que \(\displaystyle{1\over\sqrt{1-4x}}=\displaystyle\sum\limits_{n=0}^{+\infty}{1\over4^n}{2n\choose n}x^n\).
Écrire en Python une fonction renvoyant \(a_{p,q}(n)\).
Écrire une fonction renvoyant \(f_{2,1}(x)\) ; tracer le graphe de \(x\longmapsto f_{2,1}(x)\sqrt{1-4x}\). Conjecture ?
Démontrer la conjecture précédente.
Tracer le graphe de \(x\longmapsto f_{0,1}(x)\sqrt{1-x^2}\). Conjecture ?
Sur les pages de résultats et selon les options d'affichage choisies, vous pouvez déployer les familles des exercices affichés