[concours/ex7131] ccp MP 2005
[concours/ex7131]
Décomposer \(f(x)=\displaystyle{1\over(1+x)((2-x)}\) en éléments simples.
La fonction \(f\) est-elle développable en série entière ?
Donner un développement de \(f\) à l’ordre 3 en 0.
[oraux/ex2037] saint-cyr MP 2005 Soit \(f(x)=\displaystyle{1\over1-6x-x^2}\). Montrer que \(f\) est développable en série entière sur un voisinage de l’origine et calculer les coefficients de son développement.
[oraux/ex2037]
[oraux/ex2152] mines MP 2009 Développer en série entière \(x\mapsto\displaystyle\int_{-\infty}^x{dt\over1+t^2+t^4}\).
[oraux/ex2152]
[planches/ex2254] mines PSI 2017 Décomposer en série entière l’application \[f:x\longmapsto\int_{-\infty}^x{dt\over1+t+t^2}.\]
[planches/ex2254]
[oraux/ex2300] mines MP 2005 Soit \(f:x\mapsto\displaystyle\int_{-\infty}^x{dt\over1+t+t^2}\). Définition de \(f\). Montrer que \(f\) est développable en série entière au voisinage de 0. Préciser le rayon de convergence.
[oraux/ex2300]
[planches/ex0535] centrale MP 2014 (avec Maple)
[planches/ex0535]
Maple
Soit, pour \(x\in I=\left]-\pi/2,\pi/2\right[\), \(\psi(x)=\displaystyle{1\over\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x}\). On admet que \(\psi\) est développable en série entière autour de 0 sur \(I\), avec un développement de la forme \(\psi(x)=\displaystyle\sum\limits_{n=0}^{+\infty}{E_n\over(2n)\,!}x^{2n}\).
Calculer \(E_n\) pour \(n\in[[0,10]]\). Que remarque-t-on ?
Montrer que \(E_n=(-1)^{n+1}\displaystyle\sum\limits_{k=0}^{n-1}{2n\choose2k}(-1)^kE_k\) (utiliser \(\psi(x)\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits x=1\)). En déduire le résultat conjecturé.
On admet que, sur \(I\), \(\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits x=\displaystyle\sum\limits_{k=0}^{+\infty}{F_n\over(2n+1)\,!}x^{2n+1}\).
Montrer que les \(F_n\) sont des entiers strictement positifs (utiliser \(\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits'=1+\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits^2\)).
Montrer que \(E_{n+1}=\displaystyle\sum\limits_{k=0}^n{2n\choose2k}F_kE_{n-k}\) (utiliser \(\psi'=\psi\mathop{\mathchoice{\hbox{tan}}{\hbox{tan}}{\mathrm{tan}}{\mathrm{tan}}}\nolimits\)). Montrer que \((E_n)\) est une suite strictement croissante d’entiers.
Conjecturer la valeur de \(A_n=\displaystyle\sum\limits_{k=0}^n{2n\choose2k}\) et de \(B_n=\displaystyle\sum\limits_{k=0}^n(-1)^k{2n\choose2k}\), puis démontrer cette conjecture.
[series/ex0499] Calculer la série de MacLaurin de \(f(x)=\displaystyle{1\over x^2+x+1}\).
[series/ex0499]
[concours/ex3192] mines M 1993 On pose \(f(x)=\sqrt{1+2x+3x^2}\). Identifier la courbe \(y=f(x)\). Montrer que \(f\) est \(C^\infty\) ; à tout ordre on a donc \[f(x)=\sum\limits_{k=0}^na_nx^n+o(x^n).\] Calculer \(a_0\), \(a_1\), \(a_2\). Trouver une relation de récurrence d’ordre \(2\) linéaire entre les \(a_n\). On pose \[g(x)=\sum\limits_{n=0}^{+\infty}a_nx^n\ ;\] montrer que le rayon de convergence de cette série entière est \(1/\sqrt3\). Montrer que \(g=f\) sur \(\left]-R,R\right[\).
[concours/ex3192]
[concours/ex2797] mines M 1994 Étudier la fonction \(f(x)=\sqrt{1+x+x^2}\). Trouver son développement en série entière.
[concours/ex2797]
[planches/ex2755] navale PSI 2017 Développer \(f(x)=\displaystyle{1\over2+x-x^2}\) en série entière.
[planches/ex2755]
[series/ex0500] Si \(f(x)=\displaystyle{1\over x^2+x+1}\), calculer \(f^{(36)}(0)\).
[series/ex0500]
[oraux/ex2185] PC 2009 Donner le développement en série entière de \(F:x\mapsto\displaystyle{2x-1\over(2+x-x^2)^2}\).
[oraux/ex2185]
[series/ex0431] Calculer les quatre premiers termes non nuls de la série entière \(\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits x\over1-x}\).
[series/ex0431]
[series/ex0567] Développer en série entière la fonction : \(t\mapsto\displaystyle{\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits4t\over\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t}\).
[series/ex0567]
[planches/ex8391] mines PC 2022 On pose : \[\forall x\in\mathbf{R}_+^*,\ f(x)={\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits(\sqrt[4]x)-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\sqrt[4]x)\over\sqrt x}\quad\hbox{et}\quad\forall x\in\mathbf{R}-*,\ f(x)={2\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits(\sqrt[4]{-x/4})\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits(\sqrt[4]{-x/4})\over\sqrt{-x}}.\] Montrer que \(f\) se prolonge en une fonction \(\mathscr{C}^\infty\) sur \(\mathbf{R}\).
[planches/ex8391]
[examen/ex1755] mines MP 2024 Soit \(f:z\in\mathbf{C}\setminus\{1\}\mapsto\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits\left(\displaystyle\frac{z}{1-z}\right)\).
[examen/ex1755]
Montrer que \(f\) est développable en série entière au voisinage de 0 et donner son rayon de convergence.
On écrit \(f(z)=\displaystyle\sum\limits_{n=0}^{+\infty}a_nz^n\).
Donner une expression sommatoire des \(a_n\).
Trouver une relation de récurrence vérifiée par la suite \((a_n)\).
Donner un développement asymptotique de \(\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits(a_n)\).
[planches/ex0640] mines PC 2016 Développer en série entière au voisinage de 0 la fonction : \[f:x\longmapsto\mathop{\mathchoice{\hbox{ln}}{\hbox{ln}}{\mathrm{ln}}{\mathrm{ln}}}\nolimits\left(1+{x^2\over1+x}\right).\]
[planches/ex0640]
[planches/ex8423] mines PC 2022
[planches/ex8423]
Développer en série entière la fonction \(x\in\left]0,1\right[\longmapsto\displaystyle{\mathop{\mathchoice{\hbox{arccos}}{\hbox{arccos}}{\mathrm{arccos}}{\mathrm{arccos}}}\nolimits(1-x)\over\sqrt x}\).
Donner une expression simple de la somme de cette série entière sur \(\left]-1,0\right[\).
[planches/ex9924] mines MP 2023 Soient \(\tau\in\mathbf{R}\) et \(f:x\mapsto\displaystyle\mathop{\mathchoice{\hbox{arctan}}{\hbox{arctan}}{\mathrm{arctan}}{\mathrm{arctan}}}\nolimits\left(\tau\frac{x-1}{x+1}\right)\). Montrer que \(f\) est développable en série entière en \(0\) et préciser le domaine exact de validité.
[planches/ex9924]
[series/ex0040] Peut-on prolonger à \(\mathbf{R}^*_-\) la fonction \(f\) définie sur \(\mathbf{R}^+\) par \(f(t)=\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\sqrt t\), de façon à obtenir une fonction développable en série entière ?
[series/ex0040]
Un exercice sélectionné se reconnaît à sa bordure rouge