[examen/ex0740] ccinp PSI 2023 Pour \(A\in\mathscr{M}_n(\mathbf{R})\), on cherche les \(B\in\mathscr{M}_n(\mathbf{R})\) telles que \(B^2=A\) \((*)\).
[examen/ex0740]
Montrer que si \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(A)<0\), \((*)\) n’a pas de solution.
En déduire une condition nécessaire pour que \((*)\) possède une solution.
Calculer le déterminant de \(A=\pmatrix{2+a&2&1+a\cr3-a&3&3-a\cr-2&-2&-1}\). En déduire une condition nécessaire portant sur \(a\) pour que \((*)\) possède une solution. On suppose par la suite que \(a\geqslant 0\).
Calculer \(\chi_A\) et déterminer les éléments propres de \(A\). On distinguera les cas \(a=1\) et \(a=3\).
Montrer qu’il existe \(P\) inversible et \(D\) diagonale telles que \(A=PDP^{-1}\). On suppose par la suite que \(a\not\in\{1;3\}\).
On suppose qu’il existe \(M\) telle que \(M^2=D\). Montrer que \(MD=DM\).
En déduire toutes les matrices \(M\) telles que \(M^2=D\).
Montrer que \(M^2=D\ \Leftrightarrow\ (PMP^{-1})^2=A\).
En déduire toutes les matrices \(B\) telles que \(B^2=A\).
[planches/ex9354] ens PC 2023 Soit \(A\in\mathscr{S}_3(\mathbf{R})\) telle que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=3\), \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A^2)=5\), \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A^3)=9\). Déterminer la borne inférieure de \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(M^2)\) lorsque \(M\) décrit \[\left\{ M\in\mathscr{S}_3(\mathbf{R})\ ;\ \mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(AM)=1\hbox{ et } \mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A^2M)=1\right\}.\]
[planches/ex9354]
[oraux/ex7047] polytechnique MP 2014 Résoudre l’équation \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(X)=I_n\) dans \(\mathscr{M}_n(\mathbf{R})\).
[oraux/ex7047]
[concours/ex9922] polytechnique MP 2010 Montrer que si \(A\) appartient à \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\), il existe \(M\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) telle que \(M^2=A\).
[concours/ex9922]
[examen/ex1065] ens paris, ens lyon, ens saclay, ens rennes MP 2024 Soient \(A\), \(B\), \(C\in\mathscr{M}_n(\mathbf{R})\). On considère l’équation \((E)\): \(X-AXB=C\) d’inconnue \(X\in\mathscr{M}_n(\mathbf{R})\). On note \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\) et \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\) les spectres complexes de \(A\) et \(B\).
[examen/ex1065]
On suppose que, pour tout \((\alpha,\beta)\in \mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\times\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\), \(\alpha\beta\neq1\). Montrer que l’équation \((E)\) admet une unique solution.
Que se passe-t-il dans le cas général ?
Sur les pages de résultats, vous pouvez déterminer le nombre d'énoncés affichés