[concours/ex2152] polytechnique M 1995 Soit \[E=\left\{\left(\begin{array}{ccc}a&b&c\\c&a&b\\b&c&a\end{array}\right) \in\mathscr{M}_3(\mathbf{R})\right\}.\] Déterminer toutes les matrices de \(E\) telles que \(M^2=I_3\). Interprétation géométrique de ces matrices.
[concours/ex2152]
[planches/ex6070] ens paris, ens lyon, ens saclay, ens rennes MP 2021 Soit \(p\) un nombre premier.
[planches/ex6070]
Déterminer les matrices \(A\) de \(\mathscr{M}_p(\mathbf{C})\) telle que \(A^p=I_p\).
Déterminer les matrices \(A\) de \(\mathscr{M}_p(\mathbf{Q})\) telle que \(A^p=I_p\).
[concours/ex4433] escp S 2006
[concours/ex4433]
On définit les fonctions \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\) sur \(\mathbf{R}\), par : \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t =\displaystyle{e^t+e^{-t}\over2}\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t =\displaystyle{e^t-e^{-t}\over2}\).
On pose pour \(t \in \mathbf{R}\), \(M_t=\left(\begin{array}{cc}\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t& \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t\\ \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t&\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t\end{array}\right)\).
Étudier les variations des fonctions \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\) et tracer leur graphe dans un repère orthonormé du plan. Calculer, pour \(t\in \mathbf{R}\), \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits^2t - \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits^2 t\).
En déduire que si \(a\), \(b\) sont deux réels vérifiant \(a^2-b^2=1\), il existe \(t \in \mathbf{R}\) et \(\varepsilon\in\{-1,1\}\) tels que \(a=\varepsilon\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t\) et \(b=\varepsilon\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t\).
Montrer que la matrice \(M_t\) est diagonalisable et que l’on peut choisir une base de vecteurs propres de \(M_t\) indépendants de \(t\).
Montrer que l’application \(\theta : \mathbf{R} \rightarrow {\cal M}_2(\mathbf{R})\) définie par \(\theta(t)= M_t\) est injective et vérifie pour tout \((t,t')\in \mathbf{R}^2\), \(\theta (t+t')=\theta (t) \theta (t')\).
On pose \(E=\mathbf{R}^2\), \(J=\left(\begin{array}{cc}1&0\\ 0&-1\end{array}\right)\) et \(q(x,y)=x^2-y^2\). On cherche les éléments \(f \in {\cal L}(E)\) tels que \(q \mathbin{\circ} f=q\).
Montrer que \(f\) est solution de cette équation si et seulement si sa matrice \(M\) vérifie la relation \((\star)\) : \({}^tMJM=J\).
Déterminer l’ensemble des matrices qui vérifient la relation \((\star)\) et montrer qu’il contient les matrices \(M_t\) pour tout \(t \in \mathbf{R}\).
[concours/ex1800] mines MP 1999 Soit \(A=\left(\begin{array}{cccc} 0&1&0&0\\ -1&0&0&0\\0&0&1&1\\0&0&0&1\end{array}\right)\). Pour \(n\in\mathbf{N}^*\), \(n\geqslant 2\), résoudre \(X^n=A\) dans \(\mathscr{M}_4(\mathbf{C})\), puis dans \(\mathscr{M}_4(\mathbf{R})\).
[concours/ex1800]
[concours/ex3831] ensi M 1992 Déterminer toutes les matrices \(M\in\mathscr{M}_3(K)\) telles que \(M^2=0\).
[concours/ex3831]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez une référence d'exercice dans un tableau, voire ne rien afficher