[planches/ex4785] polytechnique, espci PC 2019 On pose, pour \(q\in\mathbf{R}^*\), \(A_q=\pmatrix{q&q(q+1)\cr q(q-1)&q}\) et \(A'_q=\displaystyle{A_q\over q^2}\).
[planches/ex4785]
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A_p\) et \(A_q\) soient semblables.
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A'_p\) et \(A'_q\) soient semblables.
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) telles que \(B^2=A_q^2\).
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) semblables à \(A_q\) et telles que \(B^2=A_q^2\).
[concours/ex6800] escp B/L 2009 On considère la matrice de \({\cal M}_3(\mathbb{R})\) définie par : \(A=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 4 & 0 \\ 2 & 3 & 9 \end{array}\right)\).
[concours/ex6800]
L’objet de l’exercice est de résoudre dans \({\cal M}_3(\mathbb{R})\) l’équation \((E)\) d’inconnue \(M\) : \(M^2=A\).
Déterminer les valeurs propres et les vecteurs propres de \(A\).
Démontrer que si \(M\) est une solution de \((E)\), alors les matrices \(A\) et \(M\) commutent et tout vecteur propre de \(A\) est un vecteur propre de \(M\).
En déduire que toute solution de \((E)\) est diagonalisable et déterminer toutes les solutions de \((E)\).
[concours/ex4667] escp courts 2004 Résoudre \(X^2=\left(\begin{array}{ccc}1&0&0\\ 1&0&0\\ 0&0&0\end{array}\right)\).
[concours/ex4667]
[examen/ex1066] ens lyon MP 2024 Combien y-a-t-il de classes de similitude de \(\mathscr{M}_{3n}(\mathbf{R})\) constituées de matrices \(M\) telles que \(M^3=0\) ?
[examen/ex1066]
[concours/ex0407] centrale MP 1996 Résoudre dans \(\mathscr{M}_2(\mathbf{R})\), puis dans \(\mathscr{M}_3(\mathbf{R})\), l’équation : \(A^2+A+\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}=0\).
[concours/ex0407]
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris