[concours/ex6557] mines MP 2006 Trouver les \(M\) de \(\mathscr{M}_n(\mathbf{R})\) telles que \({}^tM=M^2\) et que \(M\) n’ait aucune valeur propre réelle.
[concours/ex6557]
[concours/ex6638] hec E 2008 Pour tout nombre réel \(a\), on note \(A(a)\) la matrice : \(A(a)=\left[\begin{array}{ccc}2&1&a\\1&1+a&1\\a&1&2\end{array}\right]\).
[concours/ex6638]
Question de cours : Rappeler la définition d’une matrice diagonalisable.
Montrer que si une matrice est diagonalisable, sa transposée est également diagonalisable.
Justifier le fait que pour tout \(a\) réel, la matrice \(A(a)\) est diagonalisable.
Montrer que \(a\) est valeur propre de \(A(a)\) et déterminer la dimension du sous-espace propre associé.
Calculer \(A(a)\left[\begin{array}{c}1\\1\\1\end{array}\right]\) et \(A(a)\left[\begin{array}{c}1\\0\\ -1\end{array}\right]\).
Diagonaliser \(A(a)\).
Soit \((x_n)_{n\in\mathbf{N}}\), \((y_n)_{n\in\mathbf{N}}\) et \((z_n)_{n\in\mathbf{N}}\) trois suites réelles vérifiant, pour tout \(n\) entier naturel, \(\left\{\begin{array}{rcl} x_{n+1}&=&2x_n+y_n\\y_{n+1}&=&xn_+y_n+z_n\\z_{n+1}&=&y_n+2z_n \end{array}\right.\)
Si l’on pose pour tout \(n\) entier naturel, \(X_n=\left[\begin{array}{c}x_n\\y_n\\z_n\end{array}\right]\), quelle relation a-t-on entre \(X_{n+1}\) et \(X_n\) ?
Déterminer une condition nécessaire et suffisante portant sur \(x_0\), \(y_0\) et \(z_0\) pour que les suites \((x_n)\), \((y_n)\) et \((z_n)\) soient bornées. Que peut-on dire alors de ces trois suites ?
Montrer que si \(B\) et \(B'\) sont deux matrices semblables de \(\mathscr{M}_3(\mathbf{R})\) et qu’il existe \(C\in\mathscr{M}_3(\mathbf{R})\) telle que \(C^2=B\), alors il existe \(C'\in\mathscr{M}_3(\mathbf{R})\) telle que \(C'^2=B'\).
Montrer que si \(B\) et \(C\) sont deux matrices de \(\mathscr{M}_3(\mathbf{R})\) telles que \(C^2=B\), alors \(BC=CB\).
Si \(a\in\mathbf{R}\), déterminer les matrices de \(\mathscr{M}_3(\mathbf{R})\) commutant avec la matrice \(\left[\begin{array}{ccc}3&0&0\\0&6&0\\0&0&-1\end{array}\right]\).
Existe-t-il une matrice \(M\) de \(\mathscr{M}_3(\mathbf{R})\) telle que \(M^2=A(3)\) ?
[concours/ex9956] mines MP 2010 Soit \(p\) dans \(\mathbf{N}^*\). Trouver les \(M\) de \(\mathscr{M}_n(\mathbf{R})\) telles que : \(M^{p+2}=M\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\).
[concours/ex9956]
[concours/ex9728] centrale MP 2008 Soit \(A\) dans \(\mathscr{M}_2(\mathbf{C})\) admettant deux valeurs propres distinctes \(\lambda\) et \(\mu\). Trouver un polynôme \(P\) de \(\mathbf{C}[X]\) tel que \(e^A=P(A)\).
[concours/ex9728]
[concours/ex9519] mines MP 2005 Trouver les \(A\) de \(\mathscr{M}_6(\mathbf{C})\) telles que \(A^3-5A^2+8A-4I=0\) ; \(A^2-3A+2I\neq0\) ; \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A=8\).
[concours/ex9519]
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris