[examen/ex1065] ens paris, ens lyon, ens saclay, ens rennes MP 2024 Soient \(A\), \(B\), \(C\in\mathscr{M}_n(\mathbf{R})\). On considère l’équation \((E)\): \(X-AXB=C\) d’inconnue \(X\in\mathscr{M}_n(\mathbf{R})\). On note \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\) et \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\) les spectres complexes de \(A\) et \(B\).
[examen/ex1065]
On suppose que, pour tout \((\alpha,\beta)\in \mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\times\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\), \(\alpha\beta\neq1\). Montrer que l’équation \((E)\) admet une unique solution.
Que se passe-t-il dans le cas général ?
[planches/ex7319] ccinp PSI 2021 Soit \(A=\pmatrix{3&2&-3\cr-1&5&-2\cr-1&3&0}\).
[planches/ex7319]
La matrice \(A\) est-elle diagonalisable ? Déterminer ses éléments propres.
Trouver une matrice \(B\in\mathscr{M}_3(\mathbf{R})\) telle que \(B^2=A\).
Les matrices \(B\in\mathscr{M}_3(\mathbf{R})\) telles que \(B^2=A\) sont-elles diagonalisables ?
[planches/ex5683] ccinp PC 2019 Soit \(A=\pmatrix{1&-2\cr-3&-1}\in\mathscr{M}_2(\mathbf{R})\). Est-ce que \(A\) admet une racine carrée réelle ?
[planches/ex5683]
[oraux/ex7617] ccp PSI 2014 Soit \(A=\pmatrix{1&2&0\cr0&3&0\cr1&4&-1}\).
[oraux/ex7617]
Déterminer le spectre de \(A\) et trouver une matrice diagonale \(D\) semblable à \(A\).
Montrer que toute matrice commutant avec \(D\) est nécessairement diagonale.
Soit \(P=X^7+X+1\). Déterminer les matrices \(M\in\mathscr{M}_3(\mathbf{R})\) telles que \(P(M)=A\).
[concours/ex3831] ensi M 1992 Déterminer toutes les matrices \(M\in\mathscr{M}_3(K)\) telles que \(M^2=0\).
[concours/ex3831]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une filière en particulier