[planches/ex4640] polytechnique MP 2019 Déterminer les \(n\in\mathbf{N}^*\) tels qu’existe \(A\in\mathscr{M}_n(\mathbf{R})\) de polynôme minimal \(X^3+2X+2\). Même question dans \(\mathscr{M}_n(\mathbf{Q})\).
[planches/ex4640]
[concours/ex4663] escp courts 2004 Résoudre l’équation \(X^3=\left(\begin{array}{cc}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t& \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t\\ \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t&-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t\end{array}\right)\).
[concours/ex4663]
[concours/ex9765] ens paris MP 2009 Pour \(K=\mathbf{C}\), \(\mathbf{R}\) ou \(\mathbf{Q}\), trouver les \(n\) tels qu’il existe \(A\in\mathscr{M}_n(K)\) \(A^2+2A+5I_n=0\).
[concours/ex9765]
[planches/ex6871] mines PSI 2021 Diagonaliser \(A=\pmatrix{3&5\cr0&-12}\) puis résoudre l’équation \(M^3+2M=A\) dans \(\mathscr{M}_2(\mathbf{R})\).
[planches/ex6871]
[oraux/ex3832] mines MP 2011 Résoudre dans \(\mathscr{M}_3(\mathbf{R})\) : \(X^2=\left(\begin{array}{ccc}1&0&0\\0&2&0\\0&0&2\end{array}\right)\).
[oraux/ex3832]
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces