[oraux/ex7591] mines PC 2014 Soit \(A\in\mathscr{M}_n(\mathbf{C})\) diagonalisable et \(P\in\mathbf{C}[X]\) avec \(\mathop{\mathchoice{\hbox{deg}}{\hbox{deg}}{\mathrm{deg}}{\mathrm{deg}}}\nolimits P\geqslant 1\). Montrer qu’il existe \(M\in\mathscr{M}_n(\mathbf{C})\) tel que \(P(M)=A\).
[oraux/ex7591]
[concours/ex9538] centrale MP 2005 Soient \(u\) et \(v\) dans \(\mathscr{L}(\mathbf{R}^n)\) diagonalisables et tels que \(u^3=v^3\). Montrer que \(u=v\).
[concours/ex9538]
[oraux/ex7566] mines MP 2014 Existe-t-il \(A\in\mathscr{M}_3(\mathbf{Q})\setminus\{I_3\}\) telle que \(A^5=I_3\) ?
[oraux/ex7566]
[planches/ex9184] ens paris MP 2023 Le groupe \(\mbox{GL}_2(\mathbf{Q})\) contient-il un élément d’ordre \(5\) ?
[planches/ex9184]
[planches/ex9108] escp B/L 2023 Soit \(n\in\mathbb{N}^*\), on note \(\mathscr{M}_n(\mathbb{R})\) l’ensemble des matrices carrées d’ordre \(n\) à coefficients réels.
[planches/ex9108]
Si \(M\in\mathscr{M}_n(\mathbb{R})\), on désigne respectivement par \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(M)=\left\{X\in\mathscr{M}_{n,1}(\mathbb{R})\mid MX=0\right\}\) et \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(M)=\left\{MX\mid X\in\mathscr{M}_{n,1}(\mathbb{R})\right\}\) le noyau et l’image de \(M\).
On dit qu’une matrice \(M\in\mathscr{M}_n(\mathbb{R})\) est involutive si \(M^2=I\) où \(I\) est la matrice identité d’ordre \(n\).
On considère une matrice involutive \(A\) de \(\mathscr{M}_n(\mathbb{R})\).
Montrer que \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I-A)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I+A)\) sont supplémentaires. En déduire que \(A\) est diagonalisable.
Montrer que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)\in[[-n,n]]\). Étudier la parité de \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)\) en fonction de celle de \(n\).
Que peut-on dire de plus sur les sous espaces \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I-A)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I+A)\) lorsque \(A\) est aussi symétrique ?
(\(\mathscr{M}_{n,1}(\mathbb{R})\) est muni du produit scalaire canonique).
Dans cette question, on considère deux matrices involutives \(A\) et \(B\) de \(\mathscr{M}_n(\mathbb{R})\).
Développer et simplifier les produits \((A+B)(A-B)\) et \((A-B)(A+B)\).
Montrer que \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(AB-BA)\subset\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A+B)\cap\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A-B)\).
Prouver que \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(AB-BA)=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A+B)\cap\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A-B)\).
On se place dans le cas où \(n=2\) et on considère les matrices \[M=\pmatrix{0&1\cr1&0},\quad N_1=\pmatrix{1&0\cr0&0}\quad\hbox{et}\quad N_2=\pmatrix{-1&-1\cr1&1}.\]
Existe-t-il \(Z\in\mathscr{M}_2(\mathbb{R})\) qui soit solution de l’équation \(MZ-ZM=N_1\) ?
On cherche maintenant à savoir s’il existe une matrice involutive \(A\) qui vérifie \(MA-AM=N_2\). Montrer que l’on a nécessairement \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\). En utilisant la question 2c déterminer l’ensemble des possibilités pour une telle matrice involutive \(A\).
Si \(A\) et \(Z\) sont deux solutions de l’équation \(MU-UM=N_2\) d’inconnue \(U\in\mathscr{M}_2(\mathbb{R})\), que peut on dire de la matrice \(Z-A\) ? En déduire l’ensemble des solutions de l’équation \(MU-UM=N_2\).
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple uniquement des exercices posés aux concours