[concours/ex9847] mines PC 2009
[concours/ex9847]
Soient \(P\in\mathbf{C}[X]\) non constant et \(A\in\mathscr{M}_n(\mathbf{C})\) diagonalisable . Montrer qu’il existe \(M\in\mathscr{M}_n(\mathbf{C})\) telle que \(P(M)=A\).
Déterminer les matrices \(M\in\mathscr{M}_2(\mathbf{C})\) telles que : \(M^2=I_2\), puis telles que \(M^2+M=I_2\).
[planches/ex6447] polytechnique MP 2021
[planches/ex6447]
Soient \(P\in\mathbf{C}[X]\) dont toutes les racines sont de module 1 et \(Q\in\mathbf{Z}[X]\) et \(p\) premier impair. On suppose que \(P\) et \(Q\) sont unitaires de degré 1 et que \(P=p^nQ\left(\displaystyle{X-1\over p}\right)\). Montrer que \(P=(X-1)^n\).
Soient \(C\in\mathscr{M}_n(\mathbf{C})\), \(M\in\mathscr{M}_n(\mathbf{Z})\) et \(p\) premier impair tels que \(C^n=I_n\) et \(C=I_n+pM\). Montrer que \(C=I_n\).
[oraux/ex7460] centrale MP 2013
[oraux/ex7460]
Expliciter une matrice \(A\in\mathscr{M}_2(\mathbf{Z})\) telle que \(A^3=I_2\) et \(A\neq I_2\).
Soit \(A\in\mathscr{M}_n(\mathbf{Z})\). On suppose qu’il existe \(k\in\mathbf{N}^*\) tel que \(A^p=I_n\), et que \(A-I_n\) est à coefficients pairs. On note \(B=(A-I_n)/2\) (qui est à coefficients entiers).
Montrer que les valeurs propres de \(B\) appartiennent toutes au cercle de centre \(-1/2\) et de rayon \(1/2\).
Montrer qu’il existe deux entiers naturels \(a\) et \(b\) ainsi qu’un polynôme \(P\in\mathbf{Z}[X]\) unitaire tel que \(\chi_B=X^a(1-X)^bP(X)\), \(P(0)\neq0\) et \(P(1)\neq0\).
Montrer que \(P\) est constant. En déduire \(A^2=I_n\).
Soient \(p\geqslant 3\) entier et \(A\in\mathscr{M}_n(\mathbf{Z})\). On suppose qu’il existe \(k\in\mathbf{N}^*\) tel que \(A^k=I_n\) et que tous les coefficients de \(A-I_n\) sont divisibles par \(p\). Montrer que \(A=I_n\).
On note \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})=\{A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R}),\ A\in\mathscr{M}_n(\mathbf{Z})\hbox{ et }A^{-1}\in\mathscr{M}_n(\mathbf{Z})\}\). Montrer que \((\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z}),{\times})\) est un groupe.
Soit \(G\) un sous-groupe fini de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\). Montrer que deux matrices \(A=(a_{i,j})\) et \(B=(b_{i,j})\) de \(G\) vérifiant \(\forall(i,j)\in[[1,n]]^2\), \(a_{i,j}=b_{i,j}\pmod p\) sont nécessairement égales.
[oraux/ex7556] polytechnique, espci PC 2014 Soit \(P\) un polynôme réel non constant. Existe-t-il \(M\in\mathscr{M}_n(\mathbf{C})\) tel que \(P(M)=0\) ? Existe-t-il \(M\in\mathscr{M}_n(\mathbf{R})\) tel que \(P(M)=0\) ?
[oraux/ex7556]
[concours/ex5779] mines PSI 2007 Soit \(P\in\mathbf{C}[X]\) avec \(\mathop{\mathchoice{\hbox{deg}}{\hbox{deg}}{\mathrm{deg}}{\mathrm{deg}}}\nolimits P\geqslant 1\) et \(A\) diagonalisable dans \(\mathscr{M}_n(\mathbf{C})\). Montrer qu’il existe \(M\in\mathscr{M}_n(\mathbf{C})\) telle que \(P(M)=A\).
[concours/ex5779]
Vous pouvez choisir le type d'affichage de la liste des résultats : tableau ou liste