[planches/ex3912] centrale PSI 2018
[planches/ex3912]
Déterminer une matrice de \(\mathscr{M}_3(\mathbf{R})\) dont les valeurs propres sont exactement les racines troisièmes de l’unité.
Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=I_3\) et \(B\in\mathscr{M}_{n,1}(\mathbf{R})\).
On suppose dans cette question que 1 n’est pas valeur propre de \(A\).
Montrer que l’entier \(n\) est pair.
Exprimer \(A^2\) à l’aide de \(A\) et \(I_n\).
Résoudre l’équation \(AX=X-B\) d’inconnue \(X\in\mathscr{M}_{n,1}(\mathbf{R})\).
On suppose que 1 est valeur propre de \(A\). Résoudre l’équation \(AX=X-B\) d’inconnue \(X\in\mathscr{M}_{n,1}(\mathbf{R})\).
[examen/ex1213] ens PC 2024 Existe-t-il deux matrices \(N\) et \(P\) de \(\mathscr{M} _n(\mathbf{R})\) telles que \(N^2=0\), \(P^2=P\), \(NP\) est nilpotente et \((NP)^2\neq 0\) ?
[examen/ex1213]
[planches/ex5383] centrale PSI 2019 Soit \(A\in\mathscr{M}_2(\mathbf{R})\) vérifiant \((E_1)\) : \(A^4+I_2=0\) et \((E_2)\) : \(A^TA=AA^T\). On note \(u\) et \(v\) les endomorphismes respectivement représentés par \(A\) et \(A^T\) dans la base canonique de \(\mathbf{R}^2\).
[planches/ex5383]
Montrer que \(A\) est diagonalisable dans \(\mathscr{M}_2(\mathbf{C})\). Quelles sont les valeurs propres possibles ?
Montrer que tout vecteur propre de \(u\) est vecteur propre de \(v\).
Quelles sont les matrices satisfaisant \((E_1)\) et \((E_2)\) ?
[planches/ex4784] polytechnique, espci PC 2019 Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=-A\). Montrer que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\).
[planches/ex4784]
[oraux/ex6043] escp S 2014 Dans tout l’exercice \(n\) est un entier naturel supérieur ou égal à \(2\).
[oraux/ex6043]
Soit \(A \in \mathscr{M}_n(\mathbf{R})\). On dit qu’une matrice \(R \in\mathscr{M}_n(\mathbf{R})\) est une racine carrée de \(A\) lorsque \(R^2 = A\).
Déterminer toutes les racines carrées de la matrice nulle de \(\mathscr{M}_2(\mathbf{R})\).
Dans cette question, on s’intéresse aux racines carrées \(R\in \mathscr{M}_n(\mathbf{R})\) de la matrice nulle de \(\mathscr{M}_n(\mathbf{R})\).
Soit \(R\) une telle matrice et \(f\) l’endomorphisme de \(\mathbf{R}^n\) de matrice \(R\) dans la base canonique de \(\mathbf{R}^n\) ; enfin, soit \(r\) le rang de \(f\).
Comparer \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(f)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f)\) et montrer que \(r \leqslant n/2\).
On suppose \(r \geqslant 1\) ; on note \(( e_1,\ldots,e_r,e_{r+1},\ldots,e_{n-r})\) une base de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f)\) telle que \(( e_1,\ldots,e_r)\) soit une base de \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(f)\).
Justifier que, pour \(i \in [[1,r]]\), il existe un vecteur \(u_i\) de \(\mathbf{R}^n\) tel que \(f(u_i) = e_i\). Montrer qu’alors la famille \(\mathscr{B}=(e_1,\ldots,e_{n-r},u_1,\ldots,u_r)\) est une base de \(\mathbf{R}^n\) et expliciter la matrice \(M_r\) de \(f\) dans cette base.
En déduire une expression de toutes les matrices de \(\mathscr{M}_n(\mathbf{R})\) qui sont racines carrées de la matrice nulle de \(\mathscr{M}_n(\mathbf{R})\).
Expliciter dans le cas \(n = 4\).
Dans cette question, on s’intéresse aux racines carrées \(R \in \mathscr{M}_n(\mathbf{R})\) de la matrice identité \(I_n \in \mathscr{M}_n(\mathbf{R})\).
Déterminer les matrices diagonalisables \(R \in {\cal M}_n(\mathbf{R})\) qui sont racines carrées de \(I_n\).
Soit \(R\) une racine carrée de \(I_n\); on note encore \(f\) l’endomorphisme de \(\mathbf{R}^n\) de matrice \(R\) dans la base canonique de \(\mathbf{R}^n\).
Montrer que \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f+id) \cap \mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-id) = \{ 0 \}\).
Déterminer deux polynômes \(P\) et \(Q\) de \(\mathbf{R}[X]\) tels que : \[P(X)(X+1)+Q(X)(X-1) = 1\] En déduire que \(\mathbf{R}^n = \mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f+id) \oplus \mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-id)\).
Justifier que \(f\) est diagonalisable et en déduire toutes les solutions \(R\) cherchées.
[oraux/ex7047] polytechnique MP 2014 Résoudre l’équation \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(X)=I_n\) dans \(\mathscr{M}_n(\mathbf{R})\).
[oraux/ex7047]
[planches/ex4641] polytechnique MP 2019 Soit \(M\in\mathscr{M}_2(\mathbf{R})\). À quelle condition \(M\) admet-elle une racine carrée dans \(\mathscr{M}_2(\mathbf{R})\) ?
[planches/ex4641]
[concours/ex1803] mines MP 1999 Soit \(A\) la matrice réelle : \[\left(\begin{array}{ccc} 2&2&4\\2&-4&-2\\1&1&2\end{array}\right).\] Déterminer l’ensemble des matrices réelles qui commutent avec \(A\), puis résoudre dans \(\mathscr{M}_3(\mathbf{R})\), pour \(n\in\mathbf{N}^*\), l’équation \(X^n=A\).
[concours/ex1803]
[planches/ex9562] polytechnique, espci PC 2023 Trouver les matrices \(A\) de \(\mathscr{M}_2(\mathbf{C})\) telles que \(A^p=A\), où \(p\) est un entier \({}\geqslant 2\).
[planches/ex9562]
[concours/ex9447] mines 2004 Trouver les \(A\) de \(\mathscr{M}_n(\mathbf{R})\) diagonalisables et telles que \(A^3+A-2I_n=0\).
[concours/ex9447]
[concours/ex6066] centrale PSI 2007 On se place sur \(K=\mathbf{R}\) ou \(\mathbf{C}\). On s’intéresse à l’équation matricielle \(AX-XA=A\) où \(A\), \(X\) sont dans \(\mathscr{M}_n(K)\).
[concours/ex6066]
Résoudre l’équation lorsque \(A=\left(\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right)\).
On revient au cas général. Si \(AM-MA=A\) que peut-on dire de \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\) ? Calculer \(A^pM-MA^p\) pour tout \(p\in\mathbf{N}\). Que dire des polynômes annulateurs de \(A\) ?
On suppose \(A\) nilpotente d’indice \(n\) et on note \(f\) l’endomorphisme canoniquement associé.
Montrer qu’il existe \(x\in K^n\) tel que \((x,f(x),\ldots,f^{n-1}(x))\) soit une base de \(K^n\). En déduire les endomorphismes \(g\) tels que \(f\mathbin{\circ} g-g\mathbin{\circ} f=f\).
[planches/ex5683] ccinp PC 2019 Soit \(A=\pmatrix{1&-2\cr-3&-1}\in\mathscr{M}_2(\mathbf{R})\). Est-ce que \(A\) admet une racine carrée réelle ?
[planches/ex5683]
[planches/ex8730] centrale PC 2022 Soit \(A\in\mathscr{M}_2(\mathbf{R})\) telle que, pour un entier \(p\geqslant 3\), \(A^p=I_2\) et \(\forall k\in[[1,p-1]]\), \(A^k\neq I_2\).
[planches/ex8730]
Montrer que \(A\) est diagonalisable dans \(\mathscr{M}_2(\mathbf{C})\), mais pas dans \(\mathscr{M}_2(\mathbf{R})\).
Montrer qu’il existe \(k\in[[1,p-1]]\) tel que \(A\) est semblable à la matrice \(B=\pmatrix{0&-1\cr1&2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\left(\displaystyle{2k\pi\over p}\right)}\) avec \(\mathop{\mathchoice{\hbox{pgcd}}{\hbox{pgcd}}{\mathrm{pgcd}}{\mathrm{pgcd}}}\nolimits(k,p)=1\).
[concours/ex9671] polytechnique, espci PC 2008
[concours/ex9671]
Montrer qu’une matrice \(A\in\mathscr{M}_2(\mathbf{C})\) non diagonalisable est de la forme \(aI_2+N\) où \(a\in\mathbf{C}\) et \(N\) est nilpotente non nulle.
Soit \(n\in\mathbf{N}\). Déterminer les \(X\in\mathscr{M}_2(\mathbf{C})\) tels que \(X^n=\left(\begin{array}{cc}2&-1\\1&0\end{array}\right)\).
[planches/ex7741] polytechnique MP 2022 Soit \(f\) un endomorphisme d’un \(\mathbf{C}\)-espace vectoriel \(E\) de dimension finie, et \(n\geqslant 2\) un entier. On suppose que toutes les valeurs propres de \(f\) sont simples. Déterminer les \(u\in\mathscr{L}(E)\) tels que \(u\mathbin{\circ} f-f\mathbin{\circ} u=u^n\).
[planches/ex7741]
[planches/ex5587] ccinp PSI 2019 Soit \(f\) l’endomorphisme de \(\mathbf{R}^3\) canoniquement associé à \(A=\pmatrix{1&0&0\cr0&2&1\cr1&1&2}\). Soit \(g\) un endomorphisme de \(\mathbf{R}^3\) tel que \(g\mathbin{\circ} g=f\).
[planches/ex5587]
Déterminer les valeurs propres et les vecteurs propres de \(f\). L’endomorphisme \(f\) est-il diagonalisable ?
On note \(e_1\) et \(e_3\) des vecteurs propres de \(f\) associés aux valeurs propres 1 et 3. Montrer que \(g(e_1)\) et \(g(e_3)\) sont aussi des vecteurs propres de \(f\) associés à 1 et 3 respectivement.
En déduire que \(e_1\) et \(e_3\) sont des vecteurs propres de \(g\).
L’endomorphisme \(g\) est-il diagonalisable ?
Déterminer l’ensemble des valeurs possibles pour le spectre de \(g\).
[examen/ex1065] ens paris, ens lyon, ens saclay, ens rennes MP 2024 Soient \(A\), \(B\), \(C\in\mathscr{M}_n(\mathbf{R})\). On considère l’équation \((E)\): \(X-AXB=C\) d’inconnue \(X\in\mathscr{M}_n(\mathbf{R})\). On note \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\) et \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\) les spectres complexes de \(A\) et \(B\).
[examen/ex1065]
On suppose que, pour tout \((\alpha,\beta)\in \mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\times\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\), \(\alpha\beta\neq1\). Montrer que l’équation \((E)\) admet une unique solution.
Que se passe-t-il dans le cas général ?
[planches/ex7319] ccinp PSI 2021 Soit \(A=\pmatrix{3&2&-3\cr-1&5&-2\cr-1&3&0}\).
[planches/ex7319]
La matrice \(A\) est-elle diagonalisable ? Déterminer ses éléments propres.
Trouver une matrice \(B\in\mathscr{M}_3(\mathbf{R})\) telle que \(B^2=A\).
Les matrices \(B\in\mathscr{M}_3(\mathbf{R})\) telles que \(B^2=A\) sont-elles diagonalisables ?
[oraux/ex7617] ccp PSI 2014 Soit \(A=\pmatrix{1&2&0\cr0&3&0\cr1&4&-1}\).
[oraux/ex7617]
Déterminer le spectre de \(A\) et trouver une matrice diagonale \(D\) semblable à \(A\).
Montrer que toute matrice commutant avec \(D\) est nécessairement diagonale.
Soit \(P=X^7+X+1\). Déterminer les matrices \(M\in\mathscr{M}_3(\mathbf{R})\) telles que \(P(M)=A\).
[concours/ex0407] centrale MP 1996 Résoudre dans \(\mathscr{M}_2(\mathbf{R})\), puis dans \(\mathscr{M}_3(\mathbf{R})\), l’équation : \(A^2+A+\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}=0\).
[concours/ex0407]
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une filière en particulier