[oraux/ex3585] polytechnique MP 2011 Résoudre dans \(\mathscr{M}_4(\mathbf{R})\) : \(A^2=\mathop{\mathchoice{\hbox{diag}}{\hbox{diag}}{\mathrm{diag}}{\mathrm{diag}}}\nolimits(1,2,-1,-1)\).
[oraux/ex3585]
[concours/ex3941] polytechnique pox M 1990 Trouver, pour \(n\in\mathbf{N}\) donné, les \(X\in\mathscr{M}_2(\mathbf{R})\) telles que \[X^n=\left[\begin{array}{cc}1&2\\2&4\end{array}\right].\]
[concours/ex3941]
[planches/ex1385] hec courts S 2017 Soit \(n\in\mathbf{N}^*\) et \(A\) une matrice de \(\mathscr{M}_n(\mathbf{C})\) diagonalisable. On note \(P\) un polynôme non constant de \(\mathbf{C}[X]\).
[planches/ex1385]
Établir l’existence d’une matrice \(M\in\mathscr{M}_n(\mathbf{C})\) telle que \(P(M)=A\).
[concours/ex9506] polytechnique PC 2005 Soit \(P\) un polynôme réel tel que la fonction \(x\mapsto P(x)\) de \(\mathbf{R}\) dans \(\mathbf{R}\) est injective. Soient \(A\) et \(B\) des matrices carrées réelles diagonalisables telles que \(P(A)=P(B)\). Montrer que \(A=B\).
[concours/ex9506]
[oraux/ex7397] polytechnique MP 2013 Résoudre \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(M)=\pmatrix{1&1\cr0&1}\) dans \(\mathscr{M}_2(\mathbf{C})\).
[oraux/ex7397]
[planches/ex9184] ens paris MP 2023 Le groupe \(\mbox{GL}_2(\mathbf{Q})\) contient-il un élément d’ordre \(5\) ?
[planches/ex9184]
[oraux/ex7566] mines MP 2014 Existe-t-il \(A\in\mathscr{M}_3(\mathbf{Q})\setminus\{I_3\}\) telle que \(A^5=I_3\) ?
[oraux/ex7566]
[concours/ex9929] polytechnique, espci PC 2010 Soit \(A\in\mathscr{M}_2(\mathbf{C})\). Montrer que \(A\) est diagonalisable si et seulement si, pour tout \(P\in\mathbf{C}[X]\) non constant, il existe \(M\in\mathscr{M}_2(\mathbf{C})\) tel que \(P(M)=A\).
[concours/ex9929]
[concours/ex9538] centrale MP 2005 Soient \(u\) et \(v\) dans \(\mathscr{L}(\mathbf{R}^n)\) diagonalisables et tels que \(u^3=v^3\). Montrer que \(u=v\).
[concours/ex9538]
[concours/ex8343] centrale 2003 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) et \((E_n)\) l’équation \(M^2-(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M)M+(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits M)I_n=0\).
[concours/ex8343]
Résoudre \((E_2)\), puis \((E_3)\), puis \((E_n)\).
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une filière en particulier