[examen/ex0817] ccinp PC 2023 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) telle que \(M^3-4M^2+4M=0\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(M)=0\).
[examen/ex0817]
Montrer que les valeurs propres de \(M\) sont racines de \(P=X^3-4X^2+4X\).
Caractériser les matrices \(M\).
[concours/ex9917] polytechnique MP 2010 Soit \(A\in\mathscr{M}_2(\mathbf{C})\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) l’équation \(X^2=A\), l’équation \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(X)=A\).
[concours/ex9917]
[concours/ex5919] centrale MP 2007 Soient \(M\in\mathscr{M}_n(\mathbf{C})\) et \(\mathscr{I}(M)=\{A\in\mathbf{C}[M],\ A^2=I_n\}\).
[concours/ex5919]
On suppose \(M\) diagonalisable et on note \(p\) le nombre de valeurs propres distinctes de \(M\). Déterminer la dimension de \(\mathbf{C}[M]\) et le cardinal de \(\mathscr{I}(M)\).
On suppose \(M\) nilpotente. Décrire \(\mathscr{I}(M)\).
Que dire dans le cas général du cardinal de \(\mathscr{I}(M)\) ?
[concours/ex8985] centrale PC 2010 Soient \((a,b)\in\mathbf{R}^2\) tel que \(a^2-4b<0\), \(E\) un \(\mathbf{R}\)-espace vectoriel de dimension finie et \(u\in\mathscr{L}(E)\) tel que \(u^2+au+b\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E=0\).
[concours/ex8985]
Soit \(x\in E\setminus\{0\}\). Montrer que \(\mathop{\mathchoice{\hbox{Vect}}{\hbox{Vect}}{\mathrm{Vect}}{\mathrm{Vect}}}\nolimits(x,u(x))\) est un plan et que ce plan est stable par \(u\).
Montrer que \(E\) est somme directe de plans stables par \(u\). En déduire que la dimension de \(E\) est paire. Pouvait-on le déduire directement de la relation \(u^2+au+b\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E=0\) ?
Déterminer les \(v\in\mathscr{L}(E)\) tels que \(v^2+av+b\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}_E=0\).
[concours/ex9999] centrale MP 2010 Pour \(M\in\mathscr{M}_n(\mathbf{C})\), on note \(\mathscr{I}_M\) l’ensemble des matrices \(A\) de \(\mathbf{C}[M]\) telles que \(A^2=I_n\).
[concours/ex9999]
On suppose \(M\) diagonalisable et l’on note \(p\) le nombre de ses valeurs propres distinctes. Calculer \(\mathop{\mathchoice{\hbox{dim}}{\hbox{dim}}{\mathrm{dim}}{\mathrm{dim}}}\nolimits\mathbf{C}[M]\) et \(|\mathscr{I}_M|\).
Déterminer \(\mathscr{I}_M\) lorsque \(M\) est nilpotente.
[planches/ex3620] mines PSI 2018 Soit \(A\in\mathscr{M}_n(\mathbf{Z})\) telle que \(4A^3+2A^2+A=0\). Montrer que \((A^k)_{k\geqslant 0}\) converge et déterminer sa limite. Qu’en déduire sur \(A\) ?
[planches/ex3620]
[oraux/ex7441] mines PSI 2013 Soit \(n\in\mathbf{N}^*\). Déterminer les \(M\in\mathscr{M}_n(\mathbf{R})\) telles que \(M^3-M^2-M-2I_n=0\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(M)=0\).
[oraux/ex7441]
[oraux/ex3585] polytechnique MP 2011 Résoudre dans \(\mathscr{M}_4(\mathbf{R})\) : \(A^2=\mathop{\mathchoice{\hbox{diag}}{\hbox{diag}}{\mathrm{diag}}{\mathrm{diag}}}\nolimits(1,2,-1,-1)\).
[oraux/ex3585]
[oraux/ex7396] polytechnique MP 2013 Existe-t-il \(A\) dans \(\mathscr{M}_2(\mathbf{R})\) telle que \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(A)=-I_2\) ?
[oraux/ex7396]
[concours/ex3941] polytechnique pox M 1990 Trouver, pour \(n\in\mathbf{N}\) donné, les \(X\in\mathscr{M}_2(\mathbf{R})\) telles que \[X^n=\left[\begin{array}{cc}1&2\\2&4\end{array}\right].\]
[concours/ex3941]
Vous pouvez signaler le nombre d'énoncés visibles sur chaque page de résultats