[concours/ex8778] polytechnique, espci PC 2009 Trouver les \(A\in\mathscr{M}_n(\mathbf{C})\) telles que \(A^2+A+I_2=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)\).
[concours/ex8778]
[oraux/ex3832] mines MP 2011 Résoudre dans \(\mathscr{M}_3(\mathbf{R})\) : \(X^2=\left(\begin{array}{ccc}1&0&0\\0&2&0\\0&0&2\end{array}\right)\).
[oraux/ex3832]
[concours/ex4663] escp courts 2004 Résoudre l’équation \(X^3=\left(\begin{array}{cc}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t& \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t\\ \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits t&-\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits t\end{array}\right)\).
[concours/ex4663]
[planches/ex2196] mines PSI 2017 Trouver les matrices \(A\in\mathscr{M}_2(\mathbf{C})\) telles que \(\{B\in\mathscr{M}_2(\mathbf{C}),\ B^2=A\}\) soit fini et non vide. Que dire du cardinal de cet ensemble ?
[planches/ex2196]
[concours/ex5197] escp S 2007 Soit \(A=\left(\begin{array}{cc} -5 & 3\\ 6 & -2\end{array}\right)\).
[concours/ex5197]
Soit \(n\in \mathbf{N}^*\). L’équation \(X^n=A\), d’inconnue \(X\in {\cal M}_2(\mathbf{R})\), admet-elle au moins une solution ?
[planches/ex2310] mines PC 2017 Soit \(A=\pmatrix{-5&6\cr3&-2}\).
[planches/ex2310]
Montrer que \(A\) est diagonalisable ; préciser ses valeurs propres.
Déterminer les \(B\) telles que \(B^2=A\).
[planches/ex4640] polytechnique MP 2019 Déterminer les \(n\in\mathbf{N}^*\) tels qu’existe \(A\in\mathscr{M}_n(\mathbf{R})\) de polynôme minimal \(X^3+2X+2\). Même question dans \(\mathscr{M}_n(\mathbf{Q})\).
[planches/ex4640]
[oraux/ex0028] ccp MP 2010 Soit \(M\) dans \(\mathscr{M}_n(\mathbf{C})\) diagonalisable. Existe-t-il \(A\) dans \(\mathscr{M}_n(\mathbf{C})\) telle que \(A^2=M\) ? Même question en remplaçant \(\mathbf{C}\) par \(\mathbf{R}\).
[oraux/ex0028]
[concours/ex9616] centrale PC 2006 Soient \(E\) un \(\mathbf{C}\)-espace vectoriel de dimension 2 et \(u\in\mathscr{L}(E)\) diagonalisable. Résoudre l’équation \(v^2=u\) d’inconnue \(v\in\mathscr{L}(E)\). L’ensemble des solutions est-il fini ?
[concours/ex9616]
[oraux/ex6914] polytechnique, espci PC 2013 Déterminer les \(M\in\mathscr{M}_2(\mathbf{R})\) telles que \(M^3+2M=\pmatrix{3&5\cr0&-12}\).
[oraux/ex6914]
[concours/ex8677] mines MP 2008 Condition sur \(n\in\mathbf{N}^*\) pour qu’il existe \(A\in\mathscr{M}_n(\mathbf{R})\) vérifiant : \[A^2+2A+5I_n=0\ ?\]
[concours/ex8677]
[concours/ex9792] polytechnique PC 2009
[concours/ex9792]
Trouver une équation algébrique vérifiée par \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(2\pi/5)\).
Calculer \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(2\pi/5)\) et \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4\pi/5)\).
Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^4+A^3+A^2+A+I_n=0\). On suppose que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\) est dans \(\mathbf{Q}\). Montrer que \(n\) est divisible par 4.
Réciproquement, si \(n\) est divisible par 4, montrer qu’il existe une matrice \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\in\mathbf{Q}\) et \(A^4+A^3+A^2+A+I_n=0\).
[concours/ex8895] polytechnique, espci PC 2010 Déterminer les \(A\in\mathscr{M}_2(\mathbf{C})\) telles que telles que : \(A^2+A+I_2=\left(\begin{array}{cc}0&1\\0&1\end{array}\right)\).
[concours/ex8895]
[concours/ex6100] centrale PC 2007 Soit \(A\in\mathscr{M}_n(\mathbf{R})\) diagonalisable. Donner une condition nécessaire et suffisante pour qu’il existe \(X\in\mathscr{M}_n(\mathbf{R})\) telle que \(X^2=A\).
[concours/ex6100]
[concours/ex8647] polytechnique, espci PC 2008 Soit \(n\in\mathbf{N}^*\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^n=\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\).
[concours/ex8647]
[planches/ex7741] polytechnique MP 2022 Soit \(f\) un endomorphisme d’un \(\mathbf{C}\)-espace vectoriel \(E\) de dimension finie, et \(n\geqslant 2\) un entier. On suppose que toutes les valeurs propres de \(f\) sont simples. Déterminer les \(u\in\mathscr{L}(E)\) tels que \(u\mathbin{\circ} f-f\mathbin{\circ} u=u^n\).
[planches/ex7741]
[examen/ex0808] ccinp PC 2023 Soit \(A=\pmatrix{5&1\cr3&3}\). On cherche à résoudre l’équation \(M^2+M=A\), d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[examen/ex0808]
Résoudre dans \(\mathbf{R}\) les équations \(x^2+x-2=0\) et \(x^2-x-6=0\).
Déterminer les valeurs propres de \(A\) et les sous-espaces propres associés. La matrice \(A\) est-elle diagonalisable ?
Soit \(M\in\mathscr{M}_2(\mathbf{R})\) telle que \(M^2+M=A\).
Soit \(X\in\mathscr{M}_{2,1}(\mathbf{R})\) un vecteur propre de \(M\) associé à la valeur propre \(\lambda\). Montrer que \(X\) est un vecteur propre de \(A\) et que \(\lambda\in\{-3,-2,1,3\}\).
Montrer que \(A\) et \(M\) commutent. En déduire que tout vecteur propre de \(A\) est un vecteur propre de \(M\).
Montrer que \(M\) n’a que des valeurs propres simples (on pourra raisonner par l’absurde) et en déduire que \(M\) est diagonalisable.
Résoudre l’équation \(M^2+M=A\), d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[oraux/ex4604] escp S 2011 Soit \(A=\left(\begin{array}{ccc}2 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2\end{array}\right)\) et \(J=\left(\begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\end{array}\right)\).
[oraux/ex4604]
On note respectivement \(a\) et \(j\) les endomorphismes de \(\mathbf{R}^3\) canoniquement associés aux matrices \(A\) et \(J\).
Calculer \(J^n\) pour tout \(n\) de \(\mathbf{N}\).
En déduire que \(A^n= I +\displaystyle{4^n-1\over3} J\), où \(I\) désigne la matrice identité d’ordre \(3\).
Montrer que \(a\) admet deux valeurs propres réelles \(\lambda\) et \(\mu\) avec \(\lambda <\mu\).
Montrer qu’il existe un unique couple \((p,q)\) d’endomorphismes de \(\mathbf{R}^3\), tel que pour tout \(n\) de \(\mathbf{N}\) : \(a^n =\lambda^np+\mu^nq\).
Montrer que \(p\) et \(q\) sont deux projecteurs vérifiant \(p\mathbin{\circ} q=q\mathbin{\circ} p=0\).
Déterminer les endomorphismes \(h\) de \(\mathbf{R}^3\), combinaisons linéaires de \(p\) et \(q\) tels que \(h^2=h\mathbin{\circ} h=a\).
Montrer qu’il existe un endomorphisme \(h\) de \(\mathbf{R}^3\) qui n’est pas combinaison linéaire de \(p\) et \(q\) et qui est tel que \(h^2=a\).
[concours/ex9922] polytechnique MP 2010 Montrer que si \(A\) appartient à \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\), il existe \(M\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) telle que \(M^2=A\).
[concours/ex9922]
[planches/ex6553] polytechnique, espci PC 2021 Soit \(A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathscr{M}_n(\mathbf{R})\) définie par \(a_{i,j}=0\) si \(i>j\), \(a_{i,j}=i+j^2\) si \(i\leqslant j\). Combien y a-t-il de solutions de l’équation \(M^2=A\) dans \(\mathscr{M}_n(\mathbf{R})\) ?
[planches/ex6553]
[planches/ex5587] ccinp PSI 2019 Soit \(f\) l’endomorphisme de \(\mathbf{R}^3\) canoniquement associé à \(A=\pmatrix{1&0&0\cr0&2&1\cr1&1&2}\). Soit \(g\) un endomorphisme de \(\mathbf{R}^3\) tel que \(g\mathbin{\circ} g=f\).
[planches/ex5587]
Déterminer les valeurs propres et les vecteurs propres de \(f\). L’endomorphisme \(f\) est-il diagonalisable ?
On note \(e_1\) et \(e_3\) des vecteurs propres de \(f\) associés aux valeurs propres 1 et 3. Montrer que \(g(e_1)\) et \(g(e_3)\) sont aussi des vecteurs propres de \(f\) associés à 1 et 3 respectivement.
En déduire que \(e_1\) et \(e_3\) sont des vecteurs propres de \(g\).
L’endomorphisme \(g\) est-il diagonalisable ?
Déterminer l’ensemble des valeurs possibles pour le spectre de \(g\).
[concours/ex4433] escp S 2006
[concours/ex4433]
On définit les fonctions \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\) sur \(\mathbf{R}\), par : \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t =\displaystyle{e^t+e^{-t}\over2}\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t =\displaystyle{e^t-e^{-t}\over2}\).
On pose pour \(t \in \mathbf{R}\), \(M_t=\left(\begin{array}{cc}\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t& \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t\\ \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t&\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t\end{array}\right)\).
Étudier les variations des fonctions \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits\) et \(\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits\) et tracer leur graphe dans un repère orthonormé du plan. Calculer, pour \(t\in \mathbf{R}\), \(\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits^2t - \mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits^2 t\).
En déduire que si \(a\), \(b\) sont deux réels vérifiant \(a^2-b^2=1\), il existe \(t \in \mathbf{R}\) et \(\varepsilon\in\{-1,1\}\) tels que \(a=\varepsilon\mathop{\mathchoice{\hbox{ch}}{\hbox{ch}}{\mathrm{ch}}{\mathrm{ch}}}\nolimits t\) et \(b=\varepsilon\mathop{\mathchoice{\hbox{sh}}{\hbox{sh}}{\mathrm{sh}}{\mathrm{sh}}}\nolimits t\).
Montrer que la matrice \(M_t\) est diagonalisable et que l’on peut choisir une base de vecteurs propres de \(M_t\) indépendants de \(t\).
Montrer que l’application \(\theta : \mathbf{R} \rightarrow {\cal M}_2(\mathbf{R})\) définie par \(\theta(t)= M_t\) est injective et vérifie pour tout \((t,t')\in \mathbf{R}^2\), \(\theta (t+t')=\theta (t) \theta (t')\).
On pose \(E=\mathbf{R}^2\), \(J=\left(\begin{array}{cc}1&0\\ 0&-1\end{array}\right)\) et \(q(x,y)=x^2-y^2\). On cherche les éléments \(f \in {\cal L}(E)\) tels que \(q \mathbin{\circ} f=q\).
Montrer que \(f\) est solution de cette équation si et seulement si sa matrice \(M\) vérifie la relation \((\star)\) : \({}^tMJM=J\).
Déterminer l’ensemble des matrices qui vérifient la relation \((\star)\) et montrer qu’il contient les matrices \(M_t\) pour tout \(t \in \mathbf{R}\).
[concours/ex1803] mines MP 1999 Soit \(A\) la matrice réelle : \[\left(\begin{array}{ccc} 2&2&4\\2&-4&-2\\1&1&2\end{array}\right).\] Déterminer l’ensemble des matrices réelles qui commutent avec \(A\), puis résoudre dans \(\mathscr{M}_3(\mathbf{R})\), pour \(n\in\mathbf{N}^*\), l’équation \(X^n=A\).
[concours/ex1803]
[oraux/ex3716] polytechnique, espci PC 2011 Trouver les \(A\in\mathscr{M}_n(\mathbf{C})\) telles que : \(A+\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A){}^tA=(2/n)I_n\).
[oraux/ex3716]
[examen/ex0062] mines PSI 2023 Soient \(E\) un \(\mathbf{R}\)-espace vectoriel de dimension \(n\) et \(\alpha\in\mathbf{R}^*\). Déterminer les applications \(u\in\mathscr{L}(E)\) vérifiant \(\alpha u^3=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(u^2)u\).
[examen/ex0062]
[oraux/ex7597] centrale MP 2014
[oraux/ex7597]
Soit \(P=X-X^2\in\mathbf{R}[X]\). Établir l’existence de \(Q\in\mathbf{R}[X]\) tel que \(P(Q(X))-X\) soit divisible par \(X^4\).
Soit \(P\in\mathbf{R}[X]\) tel que \(P(0)=0\) et \(P'(0)\neq0\).
Établir l’existence d’intervalles ouverts \(I\) et \(J\) contenant 0 tels que \(P\) induise un \(\mathscr{C}^\infty\)-difféomorphisme de \(I\) sur \(J\).
Soit \(n\in\mathbf{N}^*\). Établir l’existence de \(Q\in\mathbf{R}[X]\) tel que \(X^n\) divise \(P(Q(X))-X\). On admet dans la suite que ce résultat est encore vrai sur \(\mathbf{C}\).
Soient \(d\in\mathbf{N}^*\), \(A\in\mathscr{M}_d(\mathbf{C})\) et \(P\in\mathbf{C}[X]\) admettant une racine simple. Montrer qu’il existe \(M\in\mathscr{M}_d(\mathbf{C})\) telle que \(P(M)=A\).
Soit \(P\in\mathbf{C}[X]\) de degré \({}\geqslant 2\) ne possédant pas de racines simples sur \(\mathbf{C}\). Soit \(d\in\mathbf{N}\) avec \(d\geqslant 2\).
Trouver \(A\in\mathscr{M}_d(\mathbf{C})\) telle que \(A^{d-1}\neq0\) et \(A^d=0\).
Montrer que l’équation \(P(M)=A\) n’a pas de solution dans \(\mathscr{M}_d(\mathbf{C})\).
[planches/ex4445] ens paris MP 2019 Soient \(n\in\mathbf{N}^*\), \(p\in\mathbf{N}^*\), \(A\in\mathscr{M}_n(\mathbf{C})\) admettant \(n\) valeurs propres distinctes. Résoudre \(AX-XA=X^p\) dans \(\mathscr{M}_n(\mathbf{C})\).
[planches/ex4445]
[examen/ex0601] imt MP 2023 Soit \(A\in\mathscr{M}_n(\mathbf{C})\) telle que \(4A^3+4A^2+A=0\).
[examen/ex0601]
Étudier la convergence et la limite éventuelle de la suite \((A^k)_{k\in\mathbf{N}}\).
Qu’en déduire sur la matrice \(A\) ?
[concours/ex0166] mines MP 1996 Soit \[A=\left(\begin{array}{ccc}1&1&-1\\1&1&1\\1&1&1\end{array}\right)\,.\] Résoudre l’équation à l’inconnue \(X\) dans \(\mathscr{M}_3(\mathbf{R})\) : \[5X^2+3X=A\,.\]
[concours/ex0166]
[concours/ex9597] centrale MP 2006 Soit \(A\in\mathscr{M}_n(\mathbf{R})\). On étudie l’équation : \(M^2=A\) \((*)\) d’inconnue \(M\in\mathscr{M}_n(\mathbf{R})\).
[concours/ex9597]
Pour \(n=2\), trouver \(A\) telle que \((*)\) admette \((1)\) aucune solution ; \((2)\) un ensemble fini non vide de solutions ; \((3)\) une infinité de solutions.
Pour \(n=3\), résoudre \((*)\) avec \(A=\left(\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right)\), puis avec \(A=\left(\begin{array}{ccc}2&0&0\\1&2&1\\0&1&3\end{array}\right)\).
Étudier l’équation \((*)\) dans le cas où le polynôme caractéristique \(\chi\) de \(A\) est scindé sur \(\mathbf{R}\) et à racines simples et strictement positives.
Étudier l’équation \((*)\) dans le cas où \(\chi\) est scindé sur \(\mathbf{R}\) et à racines simples et positives.
Étudier l’équation \((*)\) dans le cas où \(\chi\) est scindé sur \(\mathbf{R}\) et à racines simples et non toutes positives.
Résoudre dans \(\mathscr{M}_n(\mathbf{C})\) l’équation \(M^n=I_n\).
[concours/ex0919] centrale MP 1997 Soit \(A=\left(\begin{array}{ccc}1&0&0\\0&5&4\\0&0&5\end{array}\right)\). Déterminer les plans stables de \(A\). Résoudre \(X^2=A\).
[concours/ex0919]
[planches/ex3912] centrale PSI 2018
[planches/ex3912]
Déterminer une matrice de \(\mathscr{M}_3(\mathbf{R})\) dont les valeurs propres sont exactement les racines troisièmes de l’unité.
Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=I_3\) et \(B\in\mathscr{M}_{n,1}(\mathbf{R})\).
On suppose dans cette question que 1 n’est pas valeur propre de \(A\).
Montrer que l’entier \(n\) est pair.
Exprimer \(A^2\) à l’aide de \(A\) et \(I_n\).
Résoudre l’équation \(AX=X-B\) d’inconnue \(X\in\mathscr{M}_{n,1}(\mathbf{R})\).
On suppose que 1 est valeur propre de \(A\). Résoudre l’équation \(AX=X-B\) d’inconnue \(X\in\mathscr{M}_{n,1}(\mathbf{R})\).
[oraux/ex4172] centrale MP 2011 Soient \(A\) et \(B\) dans \(\mathscr{M}_n(\mathbf{R})\) diagonalisables et telles que \(A^3=B^3\). Montrer : \(A=B\).
[oraux/ex4172]
[concours/ex6557] mines MP 2006 Trouver les \(M\) de \(\mathscr{M}_n(\mathbf{R})\) telles que \({}^tM=M^2\) et que \(M\) n’ait aucune valeur propre réelle.
[concours/ex6557]
[concours/ex9882] ccp PSI 2009 Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^2=2A+8I_n\).
[concours/ex9882]
La matrice \(A\) est-elle inversible ? diagonalisable ?
Trouver les \(M\in\mathop{\mathchoice{\hbox{Vect}}{\hbox{Vect}}{\mathrm{Vect}}{\mathrm{Vect}}}\nolimits(I_n,A)\) telles que \(M^2=2M+8I_n\).
[planches/ex5683] ccinp PC 2019 Soit \(A=\pmatrix{1&-2\cr-3&-1}\in\mathscr{M}_2(\mathbf{R})\). Est-ce que \(A\) admet une racine carrée réelle ?
[planches/ex5683]
[oraux/ex7617] ccp PSI 2014 Soit \(A=\pmatrix{1&2&0\cr0&3&0\cr1&4&-1}\).
[oraux/ex7617]
Déterminer le spectre de \(A\) et trouver une matrice diagonale \(D\) semblable à \(A\).
Montrer que toute matrice commutant avec \(D\) est nécessairement diagonale.
Soit \(P=X^7+X+1\). Déterminer les matrices \(M\in\mathscr{M}_3(\mathbf{R})\) telles que \(P(M)=A\).
[concours/ex9548] centrale MP 2005
[concours/ex9548]
Diagonaliser \(M=\left(\begin{array}{cccc}0&0&0&1\\0&0&0&2\\0&0&0&3\\1&2&3&0\end{array} \right)\).
Trouver deux matrices \(A\) et \(B\) telles que \(\forall n\geqslant 1\), \(M^n=14^{n/2}(A+(-1)^nB)\).
Déterminer le commutant de \(M\) et sa dimension. En déduire les solutions de l’équation \(X^2=M\).
[examen/ex1214] ens PC 2024 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) telle que \(M^3=0\). Montrer qu’il existe une unique matrice \(X\in\mathscr{M}_n(\mathbf{R})\) telle que \(X+MX+XM^2=M\).
[examen/ex1214]
[concours/ex9937] polytechnique, espci PC 2010 Déterminer les \(M\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_3(\mathbf{C})\) semblables à leur inverse.
[concours/ex9937]
[planches/ex6218] escp S 2021 Soit \(f\) un endomorphisme de \(\mathbf{R}^3\) dont la matrice dans la base canonique de \(\mathbf{R}^3\) est \(A=\pmatrix{ 1 & 1 &-1\cr -1 & 3 & -3\cr -2 & 2 & -2}\).
[planches/ex6218]
Calculer le rang de \(f\). Déterminer une base de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f)\)
Calculer \(A^2\) et son rang.
Déterminer une base de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2)\).
Montrer que \(\mathbf{R}^3=\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2) \oplus \mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-2Id)\).
En déduire que \(A\) est semblable à la matrice \(B=\pmatrix{ 0 & 1 &0\cr 0 & 0 & 0\cr 0 & 0 & 2}\).
Dans cette question, on cherche à déterminer les endomorphismes \(g\) de \(\mathbf{R}^3\) tels que \(g^2=f\).
Montrer que si \(g\) est une solution, alors \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-2Id)\) sont stables par \(g\).
En déduire les solutions de l’équation \(g^2=f\).
[concours/ex9956] mines MP 2010 Soit \(p\) dans \(\mathbf{N}^*\). Trouver les \(M\) de \(\mathscr{M}_n(\mathbf{R})\) telles que : \(M^{p+2}=M\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\).
[concours/ex9956]
[oraux/ex7183] polytechnique, espci PC 2015 Déterminer les \(n\in\mathbf{N}^*\) pour lesquels il existe \((A,B)\in\mathscr{M}_n(\mathbf{C})^2\) tel que \((AB-BA)^2=I_n\).
[oraux/ex7183]
[examen/ex1065] ens paris, ens lyon, ens saclay, ens rennes MP 2024 Soient \(A\), \(B\), \(C\in\mathscr{M}_n(\mathbf{R})\). On considère l’équation \((E)\): \(X-AXB=C\) d’inconnue \(X\in\mathscr{M}_n(\mathbf{R})\). On note \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\) et \(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\) les spectres complexes de \(A\) et \(B\).
[examen/ex1065]
On suppose que, pour tout \((\alpha,\beta)\in \mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(A)\times\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits_\mathbf{C}(B)\), \(\alpha\beta\neq1\). Montrer que l’équation \((E)\) admet une unique solution.
Que se passe-t-il dans le cas général ?
[planches/ex9562] polytechnique, espci PC 2023 Trouver les matrices \(A\) de \(\mathscr{M}_2(\mathbf{C})\) telles que \(A^p=A\), où \(p\) est un entier \({}\geqslant 2\).
[planches/ex9562]
[oraux/ex7574] mines MP 2014 Existe-t-il \(M\in\mathscr{M}_4(\mathbf{Q})\) dont \(\sqrt2\) et \(\sqrt3\) est valeur propre et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=1\) ?
[oraux/ex7574]
[concours/ex1800] mines MP 1999 Soit \(A=\left(\begin{array}{cccc} 0&1&0&0\\ -1&0&0&0\\0&0&1&1\\0&0&0&1\end{array}\right)\). Pour \(n\in\mathbf{N}^*\), \(n\geqslant 2\), résoudre \(X^n=A\) dans \(\mathscr{M}_4(\mathbf{C})\), puis dans \(\mathscr{M}_4(\mathbf{R})\).
[concours/ex1800]
[planches/ex4441] ens paris MP 2019 Soient \(n\in\mathbf{N}^*\) et \((A,B)\in\mathscr{M}_n(\mathbf{R})^2\) tel que \(AB=BA\) et \(A^n=B^n=I_n\). Montrer que si \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(AB)=n\) alors \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(B)\).
[planches/ex4441]
[planches/ex4785] polytechnique, espci PC 2019 On pose, pour \(q\in\mathbf{R}^*\), \(A_q=\pmatrix{q&q(q+1)\cr q(q-1)&q}\) et \(A'_q=\displaystyle{A_q\over q^2}\).
[planches/ex4785]
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A_p\) et \(A_q\) soient semblables.
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A'_p\) et \(A'_q\) soient semblables.
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) telles que \(B^2=A_q^2\).
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) semblables à \(A_q\) et telles que \(B^2=A_q^2\).
[planches/ex5916] polytechnique PSI 2020 Soit \(A=\pmatrix{a_1&*\cdots&*\cr0&a_2&\ddots&\vdots\cr\vdots&\ddots&\ddots&*\cr0&\cdots&0&a_n}\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) avec \(a_i\neq a_j\) si \(i\neq j\). Soit \(r\geqslant 2\). On considère l’équation matricielle \((E)\) : \(T^r=A\) d’inconnue \(T\in\mathscr{M}_n(\mathbf{C})\).
[planches/ex5916]
Montrer que toutes les solutions de \((E)\) sont triangulaires supérieures. Combien y a-t-il de solutions ?
Donner une exemple d’équation \(X^r=N\) sans solution pour \(r\geqslant 2\) dans \(\mathscr{M}_2(\mathbf{C})\).
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)