[oraux/ex7114] mines PC 2014 Soient \(A\) et \(B\) dans \(\mathscr{M}_n(\mathbf{C})\). Trouver les \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(M+(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M)A=B\).
[oraux/ex7114]
[planches/ex4899] mines MP 2019
[planches/ex4899]
Soit \(f\in\mathscr{L}(\mathbf{R}^3)\setminus\{0\}\) telle que \(f^3+f=0\). Montrer qu’il existe une base de \(\mathbf{R}^3\) dans laquelle la matrice de \(f\) est \(\pmatrix{0&0&0\cr0&0&-1\cr0&1&0}\).
Si \(n\in\mathbf{N}^*\), que dire de \(f\in\mathscr{L}(\mathbf{R}^n)\) tel que \(f^3+f=0\) ?
[oraux/ex7458] centrale MP 2013
[oraux/ex7458]
Expliciter un polynôme \(P_n\in\mathbf{R}_n[X]\) tel que \(\sqrt{1+x}=P_n(x)+o(x^n)\) au voisinage de 0. Montrer que \(X^{n+1}\) divise \(1+X-P_n^2\).
Soit \(N\in\mathscr{M}_n(\mathbf{C})\) nilpotente. Montrer que la matrice \(A=I_n+N\) possède une racine carrée \(B\) dans \(\mathbf{C}[A]\), c’est-à-dire telle que \(B^2=A\).
Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) ayant une unique valeur propre. Montrer qu’il existe \(B\in\mathbf{C}[A]\) ayant une seule valeur propre et vérifiant \(B^2=A\).
Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\). Montrer qu’il existe \(B\in\mathbf{C}[A]\) telle que \(B^2=A\) et \(\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(A))=\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(B))\).
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) ayant une unique valeur propre et telle que \(A\overline A=I_n\). On prend \(B\) donnée par la question précédente. Montrer que \(A=B\overline B^{-1}\).
[oraux/ex7317] polytechnique, espci PC 2016
[oraux/ex7317]
Soit \(A\in\mathscr{M}_n(\mathbf{C})\). Montrer que le spectre de \(A\) est égal à \(\{1\}\) si et seulement si \(A-I_n\) est nilpotente.
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) telle que \(A-I_n\) est nilpotente. Montrer qu’il existe \(B\in\mathscr{M}_n(\mathbf{C})\) dont le spectre est égal à \(\{1\}\) tel que \(B^2=A\).
Soit \(N\in\mathscr{M}_n(\mathbf{R})\) (resp. \(\mathscr{M}_n(\mathbf{Q})\)) nilpotente. Montrer qu’il existe \(N'\in\mathscr{M}_n(\mathbf{R})\) (resp. \(\mathscr{M}_n(\mathbf{Q})\)) nilpotente telle que \((I_n+N')^2=I_n+N\).
[examen/ex0148] mines PC 2023
[examen/ex0148]
Déterminer une suite \((a_n)_{n\geqslant 0}\) telle qu’on ait \(\sqrt{1+x}=\displaystyle\sum\limits_{k=0}^{+\infty}a_kx^k\) au voisinage de \(0\). Préciser le rayon de convergence et le domaine de validité de l’égalité ci-dessus.
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) une matrice nilpotente. Prouver que \(\displaystyle\sum\limits_{k=0}^{+\infty}a_kA^k=I_n+A\).
Pour \(B\in\mathscr{M}_n(\mathbf{C})\), quelconque, l’équation \(X^2=B\) a-t-elle toujours des solutions dans \(\mathscr{M}_n(\mathbf{C})\) ?
La plupart des textes affichés provoquent l'apparition de bulles d'aide au passage de la souris