[planches/ex4585] ens PC 2019 Soit \(\alpha\in\mathbf{C}\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^3+X=\pmatrix{1&\alpha\cr\alpha&1}\).
[planches/ex4585]
[concours/ex8647] polytechnique, espci PC 2008 Soit \(n\in\mathbf{N}^*\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^n=\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\).
[concours/ex8647]
[examen/ex0057] mines PSI 2023 Soit \(A=\pmatrix{1&0&0\cr1&2&1\cr2&-2&-1}\).
[examen/ex0057]
Donner le spectre de \(A\) et ses espaces propres. La matrice \(A\) est-elle diagonalisable ?
Montrer qu’il existe \(P\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_3(\mathbf{R})\) tel que \(A=PTP^{-1}\) avec \(T=\pmatrix{0&0&-3\cr0&1&4\cr0&0&1}\).
Trouver l’ensemble des matrices \(M\in\mathscr{M}_3(\mathbf{R})\) telles que \(MT=TM\).
Soit \(N\in\mathscr{M}_3(\mathbf{R})\) telle que \(N^2=T\). Montrer que \(NT=TN\).
Trouver l’ensemble des matrices \(N\) telles que \(N^2=T\).
En déduire l’ensemble des matrices \(M\in\mathscr{M}_3(\mathbf{R})\) telles que \(A=M^2\).
[concours/ex2152] polytechnique M 1995 Soit \[E=\left\{\left(\begin{array}{ccc}a&b&c\\c&a&b\\b&c&a\end{array}\right) \in\mathscr{M}_3(\mathbf{R})\right\}.\] Déterminer toutes les matrices de \(E\) telles que \(M^2=I_3\). Interprétation géométrique de ces matrices.
[concours/ex2152]
[planches/ex5683] ccinp PC 2019 Soit \(A=\pmatrix{1&-2\cr-3&-1}\in\mathscr{M}_2(\mathbf{R})\). Est-ce que \(A\) admet une racine carrée réelle ?
[planches/ex5683]
Sur les pages de résultats, vous pouvez modifier l'ordre des énoncés