[planches/ex8928] ccinp PSI 2022 On considère la matrice \(A=\pmatrix{3&-3&2\cr-1&5&-2\cr-1&3&0}\).
[planches/ex8928]
La matrice \(A\) est-elle diagonalisable ? Déterminer ses éléments propres.
Déterminer une matrice \(R\) telle que \(R^2=A\).
Montrer que toutes les matrices \(R\) telles que \(R^2=A\) sont diagonalisables.
[concours/ex8772] polytechnique MP 2009 Trouver les \(A\) de \(\mathscr{M}_n(\mathbf{R})\) telles que \(A^3+A^2=2I_n\).
[concours/ex8772]
[oraux/ex7584] mines PC 2014 Soit \(B\) et \(M\) dans \(\mathscr{M}_n(\mathbf{R})\) avec \(M\) diagonalisable et \(BM=MB\). Existe-t-il \(P\) dans \(\mathbf{R}[X]\) tel que \(B=P(M)\) ?
[oraux/ex7584]
[planches/ex2803] imt PC 2017 À quelles conditions sur \(a\), \(b\in\mathbf{R}\) existe-t-il une matrice \(M\in\mathscr{M}_n(\mathbf{R})\) inversible telle que \(M^2+aM+bI_n=0_n\) ?
[planches/ex2803]
[planches/ex6072] ens paris, ens lyon, ens saclay, ens rennes MP 2021
[planches/ex6072]
Soient \(A\in\mathscr{M}_n(\mathbf{C})\) et \(\Phi_A:M\in\mathscr{M}_n(\mathbf{C})\mapsto AM+MA\in\mathscr{M}_n(\mathbf{C})\). Montrer que \(\Phi_A\) est diagonalisable si et seulement si \(A\) est diagonalisable.
Soit \(P\in\mathscr{M}_n(\mathbf{C})\). Donner une partie \(W\) dense dans \(\mathscr{M}_n(\mathbf{C})\) telle que, pour tout \(U\in W\), il existe un unique \(V\in\mathscr{M}_n(\mathbf{C})\) tel que \(UV+VU=P\).
Vous pouvez pré-filtrer l'affichage des exercices, en imposant par exemple des exercices d'une année en particulier