[oraux/ex3832] mines MP 2011 Résoudre dans \(\mathscr{M}_3(\mathbf{R})\) : \(X^2=\left(\begin{array}{ccc}1&0&0\\0&2&0\\0&0&2\end{array}\right)\).
[oraux/ex3832]
[planches/ex9058] escp S 2023 Soit \(n\in\mathbb{N}^*\), on note \(\mathscr{M}_n(\mathbb{R})\) l’ensemble des matrices carrées d’ordre \(n\) à coefficients réels.
[planches/ex9058]
Si \(M\in\mathscr{M}_n(\mathbb{R})\), on désigne respectivement par \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(M)=\left\{X\in\mathscr{M}_{n,1}(\mathbb{R})\mid MX=0\right\}\) et \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(M)=\left\{MX\mid X\in\mathscr{M}_{n,1}(\mathbb{R})\right\}\) le noyau et l’image de \(M\).
On dit qu’une matrice \(M\in\mathscr{M}_n(\mathbb{R})\) est involutive si \(M^2=I\) où \(I\) est la matrice identité d’ordre \(n\).
On considère une matrice involutive \(A\) de \(\mathscr{M}_n(\mathbb{R})\).
Montrer que \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I-A)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I+A)\) sont supplémentaires. En déduire que \(A\) est diagonalisable.
Montrer que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)\in[[-n,n]]\). Étudier la parité de \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)\) en fonction de celle de \(n\).
Que peut-on dire de plus sur les sous espaces \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I-A)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(I+A)\) lorsque \(A\) est aussi symétrique ?
(\(\mathscr{M}_{n,1}(\mathbb{R})\) est muni du produit scalaire canonique).
Dans cette question, on considère deux matrices involutives \(A\) et \(B\) de \(\mathscr{M}_n(\mathbb{R})\).
Développer et simplifier les produits \((A+B)(A-B)\) et \((A-B)(A+B)\).
Montrer que \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(AB-BA)\subset\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A+B)\cap\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A-B)\).
Prouver que \(\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(AB-BA)=\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A+B)\cap\mathop{\mathchoice{\hbox{Im}}{\hbox{Im}}{\mathrm{Im}}{\mathrm{Im}}}\nolimits(A-B)\).
On se place dans le cas où \(n=2\) et on considère les matrices \[M=\pmatrix{0&1\cr1&0},\quad N_1=\pmatrix{1&0\cr0&0}\quad\hbox{et}\quad N_2=\pmatrix{-1&-1\cr1&1}.\]
Existe-t-il \(Z\in\mathscr{M}_2(\mathbb{R})\) qui soit solution de l’équation \(MZ-ZM=N_1\) ?
On cherche maintenant à savoir s’il existe une matrice involutive \(A\) qui vérifie \(MA-AM=N_2\). Montrer que l’on a nécessairement \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\). En utilisant la question 2c déterminer l’ensemble des possibilités pour une telle matrice involutive \(A\).
Si \(A\) et \(Z\) sont deux solutions de l’équation \(MU-UM=N_2\) d’inconnue \(U\in\mathscr{M}_2(\mathbb{R})\), que peut on dire de la matrice \(Z-A\) ? En déduire l’ensemble des solutions de l’équation \(MU-UM=N_2\).
[concours/ex9792] polytechnique PC 2009
[concours/ex9792]
Trouver une équation algébrique vérifiée par \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(2\pi/5)\).
Calculer \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(2\pi/5)\) et \(\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(4\pi/5)\).
Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^4+A^3+A^2+A+I_n=0\). On suppose que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\) est dans \(\mathbf{Q}\). Montrer que \(n\) est divisible par 4.
Réciproquement, si \(n\) est divisible par 4, montrer qu’il existe une matrice \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\in\mathbf{Q}\) et \(A^4+A^3+A^2+A+I_n=0\).
[oraux/ex6914] polytechnique, espci PC 2013 Déterminer les \(M\in\mathscr{M}_2(\mathbf{R})\) telles que \(M^3+2M=\pmatrix{3&5\cr0&-12}\).
[oraux/ex6914]
[planches/ex4640] polytechnique MP 2019 Déterminer les \(n\in\mathbf{N}^*\) tels qu’existe \(A\in\mathscr{M}_n(\mathbf{R})\) de polynôme minimal \(X^3+2X+2\). Même question dans \(\mathscr{M}_n(\mathbf{Q})\).
[planches/ex4640]
Dans la page dédiée à l'examen d'un exercice, vous pouvez choisir de quelle façon sont affichées les solutions