[concours/ex9128] hec courts S 2010
[concours/ex9128]
Soit \(n\) un entier \(\geqslant 2\) et \(D=\left(\begin{array}{cccc}\lambda_1&0&\cdots&0\\0&\lambda_2&\ddots&0\\ \vdots&\ddots&\ddots&\vdots\\0&\cdots&0&\lambda_n\end{array}\right)\) une matrice diagonale de \(\mathscr{M}_n(\mathbf{C})\) dont tous les termes diagonaux sont distincts.
Soit \(C\in\mathscr{M}_n(\mathbf{C})\) une matrice telle que \(C^2=D\). Montrer que \(C\) est diagonalisable.
Soit \(n\in\mathbf{N}^*\) et \(A\) une matrice de \(\mathscr{M}_n(\mathbf{C})\) admettant \(n\) valeurs propres deux à deux distinctes.
Soit \(B\in\mathscr{M}_n(\mathbf{C})\) telle que \(B^2=A\).
Montrer que \(B\) est diagonalisable.
Montrer que tout vecteur propre de \(B\) est vecteur propre de \(A\).
En déduire qu’une base de vecteurs propres de \(A\) est aussi une base de vecteurs propres de \(B\).
Application : trouver toutes les matrices de \(\mathscr{M}_3(\mathbf{C})\) telles que \(B^2=\left(\begin{array}{ccc}1&0&1\\0&1&0\\1&0&1\end{array}\right)\).
[oraux/ex4761] escp S 2012 Soit \(n\) un entier naturel supérieur ou égal à \(2\). Soient \(A\) et \(R\) deux matrices carrées réelles d’ordre \(n\). On dit que \(R\) est une racine carrée de \(A\) si \(R^2=A\).
[oraux/ex4761]
Soit \(\theta\) un réel quelconque et \(R(\theta)\) la matrice : \(R(\theta)=\left(\begin{array}{cc}\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits \theta & \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits \theta\\ \mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits \theta &- \mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits \theta\end{array}\right)\).
Calculer le carré de cette matrice et en déduire que la matrice identité d’ordre \(2\) admet une infinité de racines carrées.
Montrer que la matrice \(\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)\) n’a pas de racine carrée.
Donner le développement limité à l’ordre \(3\) au voisinage de \(0\) de \(t \mapsto \sqrt{1+t}\).
Soit \(N\) une matrice carrée d’ordre \(n\) telle que \(N^4=0\). Déduire de la question précédente une racine carrée de la matrice \(I+N\).
Soit \(f\) et \(g\) deux endomorphismes de \(\mathbf{R}^n\). On suppose que \(f\mathbin{\circ} g= g\mathbin{\circ} f\) et que \(f\) admet \(n\) valeurs propres réelles distinctes.
Montrer que tout sous-espace propre de \(f\) est stable par \(g\).
Montrer que tout vecteur propre de \(f\) est vecteur propre de \(g\).
Justifier que \(f\) et \(g\) sont diagonalisables.
Soit \(A\) la matrice de \(f\) dans la base canonique de \(\mathbf{R}^n\). Combien \(A\) admet-elle de racines carrées ?
[planches/ex7383] navale PC 2021 Soient \(A=\pmatrix{-1&0\cr10&4}\) et \(D=\pmatrix{-1&0\cr0&4}\).
[planches/ex7383]
Déterminer les racines des polynômes \(X^3-2X+1\) et \(X^3-2X-4\).
Déterminer les matrices qui commutent avec la matrice \(D\).
Résoudre l’équation \(M^3-2M=D\) d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
Résoudre l’équation \(M^3-2M=A\) d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[planches/ex6957] mines PC 2021 Soient \(E\) un \(\mathbf{R}\)-espace vectoriel et \(v\in\mathscr{L}(E)\) un endomorphisme surjectif dont le noyau est une droite vectorielle.
[planches/ex6957]
Donner un exemple d’un tel endomorphisme si \(E=\mathbf{R}[X]\).
L’espace \(E\) peut-il être de dimension finie ?
Montrer qu’il n’existe pas d’endomorphisme \(u\in\mathscr{L}(E)\) tel que \(u\mathbin{\circ} u=v\).
[concours/ex0694] ensae MP 1997 Déterminer les matrices \(X\in\mathscr{M}_2(\mathbf{R})\) telles que \(X^3-2X=\left(\begin{array}{cc}-1&0\\10&4\end{array}\right)\).
[concours/ex0694]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher