[concours/ex8820] mines PC 2009 Soient \(A\) et \(B\) dans \(\mathscr{M}_n(\mathbf{C})\).
[concours/ex8820]
Trouver les \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(M+\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(M)A=B\).
[planches/ex4899] mines MP 2019
[planches/ex4899]
Soit \(f\in\mathscr{L}(\mathbf{R}^3)\setminus\{0\}\) telle que \(f^3+f=0\). Montrer qu’il existe une base de \(\mathbf{R}^3\) dans laquelle la matrice de \(f\) est \(\pmatrix{0&0&0\cr0&0&-1\cr0&1&0}\).
Si \(n\in\mathbf{N}^*\), que dire de \(f\in\mathscr{L}(\mathbf{R}^n)\) tel que \(f^3+f=0\) ?
[oraux/ex7317] polytechnique, espci PC 2016
[oraux/ex7317]
Soit \(A\in\mathscr{M}_n(\mathbf{C})\). Montrer que le spectre de \(A\) est égal à \(\{1\}\) si et seulement si \(A-I_n\) est nilpotente.
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) telle que \(A-I_n\) est nilpotente. Montrer qu’il existe \(B\in\mathscr{M}_n(\mathbf{C})\) dont le spectre est égal à \(\{1\}\) tel que \(B^2=A\).
Soit \(N\in\mathscr{M}_n(\mathbf{R})\) (resp. \(\mathscr{M}_n(\mathbf{Q})\)) nilpotente. Montrer qu’il existe \(N'\in\mathscr{M}_n(\mathbf{R})\) (resp. \(\mathscr{M}_n(\mathbf{Q})\)) nilpotente telle que \((I_n+N')^2=I_n+N\).
[oraux/ex7458] centrale MP 2013
[oraux/ex7458]
Expliciter un polynôme \(P_n\in\mathbf{R}_n[X]\) tel que \(\sqrt{1+x}=P_n(x)+o(x^n)\) au voisinage de 0. Montrer que \(X^{n+1}\) divise \(1+X-P_n^2\).
Soit \(N\in\mathscr{M}_n(\mathbf{C})\) nilpotente. Montrer que la matrice \(A=I_n+N\) possède une racine carrée \(B\) dans \(\mathbf{C}[A]\), c’est-à-dire telle que \(B^2=A\).
Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) ayant une unique valeur propre. Montrer qu’il existe \(B\in\mathbf{C}[A]\) ayant une seule valeur propre et vérifiant \(B^2=A\).
Soit \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\). Montrer qu’il existe \(B\in\mathbf{C}[A]\) telle que \(B^2=A\) et \(\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(A))=\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits(\mathop{\mathchoice{\hbox{Sp}}{\hbox{Sp}}{\mathrm{Sp}}{\mathrm{Sp}}}\nolimits(B))\).
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) ayant une unique valeur propre et telle que \(A\overline A=I_n\). On prend \(B\) donnée par la question précédente. Montrer que \(A=B\overline B^{-1}\).
[oraux/ex6048] escp S 2014 Dans tout cet exercice, \(n\) est un entier supérieur ou égal à \(2\). On note : \[{\cal P}_n(\mathbf{R})= \{ A\in \mathscr{M}_n(\mathbf{R}) / \forall p\in\mathbf{N}^*,\ \exists B\in \mathscr{M}_n(\mathbf{R}), \hbox{ tel que } A=B^p\}\]
[oraux/ex6048]
Soit \(A=\pmatrix{ 1 & 0 & 2 \cr 0 & 2 & 4\cr 0 & 0 & 4}\).
Montrer que \(A\) est diagonalisable.
Montrer que \(A \in {\cal P}_3(\mathbf{R})\).
Soit \(A=\pmatrix{ 1 & 0\cr 0 & -2}\). Montrer que \(A \not\in {\cal P}_2(\mathbf{R})\).
Soit \(N\in \mathscr{M}_n(\mathbf{R})\) non nulle vérifiant \(N^n=0\). Montrer que \(N\not\in {\cal P}_n(\mathbf{R})\).
Dans cette question \(N\) est une matrice non nulle, telle qu’il existe \(k\in \mathbf{N}^*\) tel que \(N^k=0\) . On pose \(A= I_n+N\).
Déterminer les valeurs propres de \(A\). La matrice \(A\) est-elle diagonalisable ?
Soit \(V\) un polynôme de \(\mathbf{R}[X]\). On suppose qu’au voisinage de \(0\), on a : \(V(x)= o(x^q)\), où \(q\in\mathbf{N}\).
Montrer qu’il existe un polynôme \(Q\) tel que \(V(X)= X^q Q(X)\).
Soit \(p\in \mathbf{N}^*\). Montrer que pour tout \(q\in \mathbf{N}^*\), il existe un polynôme \(U_q\in \mathbf{R}[X]\) tel qu’au voisinage de \(0\) on a : \(1+x = (U_q(x))^p+o(x^q)\).
(On pourra utiliser le développement limité de \((1+x)^\alpha\)).
En déduire que \(I_n+N\in {\cal P}_n(\mathbf{R})\).
[examen/ex0148] mines PC 2023
[examen/ex0148]
Déterminer une suite \((a_n)_{n\geqslant 0}\) telle qu’on ait \(\sqrt{1+x}=\displaystyle\sum\limits_{k=0}^{+\infty}a_kx^k\) au voisinage de \(0\). Préciser le rayon de convergence et le domaine de validité de l’égalité ci-dessus.
Soit \(A\in\mathscr{M}_n(\mathbf{C})\) une matrice nilpotente. Prouver que \(\displaystyle\sum\limits_{k=0}^{+\infty}a_kA^k=I_n+A\).
Pour \(B\in\mathscr{M}_n(\mathbf{C})\), quelconque, l’équation \(X^2=B\) a-t-elle toujours des solutions dans \(\mathscr{M}_n(\mathbf{C})\) ?
[oraux/ex6230] escp courts 2015 Soit \(A\) une matrice de \({\cal M}_n(\mathbf{R})\) telle que \({}^t\!AA=A{}^t\!A\).
[oraux/ex6230]
On suppose que \(A\) est nilpotente, i.e. qu’il existe un entier \(p\in \mathbf{N}^*\) tel que \(A^p=0\).
Montrer que \(A=0\).
[oraux/ex6956] mines PC 2013 Soient \((n,p)\in\mathbf{N}^2\) avec \(n\geqslant 2\) et \(p\geqslant 2\), \(M=(m_{i,j})_{1\leqslant i,j\leqslant n}\in\mathscr{M}_n(\mathbf{C})\) où \(m_{i,j}=1\) si \(j=i+1\), les autres coefficients étant nuls. Existe-t-il \(A\in\mathscr{M}_n(\mathbf{C})\) tel que \(A^p=N\) ?
[oraux/ex6956]
[concours/ex6714] escp S 2008 L’équation matricielle \(X^2=\left(\begin{array}{cc}0&1\\ 0&0\end{array}\right)\) a-t-elle des solutions dans \({\cal M}_2(\mathbb{C})\) ? Donner un exemple non trivial d’une matrice nilpotente telle que l’équation matricielle \(X^2=A\) possède des solutions.
[concours/ex6714]
[oraux/ex5486] mines PC 2012 Déterminer les \(M\in{\cal M}_3(\mathbf{R})\) telles que \(M^2+{}^t\; M=I_3\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=0\).
[oraux/ex5486]
[planches/ex8317] mines PC 2022 Soit \(A\in\mathscr{M}_n(\mathbf{C})\) telle que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\) et \(A^2+A^T=I_n\).
[planches/ex8317]
Montrer que, si \(\lambda\) est valeur propre de \(A\), alors \(\lambda^4-2\lambda^2+\lambda=0\).
En déduire que \(n\) est un multiple de 4.
[planches/ex8870] imt MP 2022 Soit une matrice \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^2+A^T=I_n\).
[planches/ex8870]
Trouver un polynôme annulateur de \(A\) de degré 4. En déduire une propriété sur \(A\). Que dire de son spectre ?
On suppose dans cette question que 0 n’est pas une valeur propre de \(A\). Montrer que \(A-I_n\) est inversible et que \(A\) est symétrique.
[concours/ex2850] ens paris M 1994 Soit \(K\) un corps fini, de caractéristique différente de \(2\). Calculer : \[\mathop{\mathchoice{\hbox{card}}{\hbox{card}}{\mathrm{card}}{\mathrm{card}}}\nolimits\left\{A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(K)\mid A^2=\mathchoice{\hbox{Id}}{\hbox{Id}}{\mathrm{Id}}{\mathrm{Id}}\right\}.\]
[concours/ex2850]
[planches/ex8938] ccinp PSI 2022 Soient \(A\in\mathscr{M}_3(\mathbf{R})\) et \(P\in\mathbf{R}[X]\) un polynôme annulateur de \(A\).
[planches/ex8938]
Montrer que les valeurs propres de \(A\) sont des racines de \(P\).
Peut-on avoir à la fois \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\) et \(A^2+A^T=I_3\) ?
[oraux/ex7775] mines PSI 2016 Déterminer \[\{M\in\mathscr{M}_n(\mathbf{R}),\ M^5=M^2,\ \mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\}.\]
[oraux/ex7775]
[concours/ex9746] tpe MP 2008 Soit \(n\) dans \(\mathbf{N}^*\). Trouver les \(A\in\mathscr{M}_n(\mathbf{R})\) telles que : \(A^2=A^3\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A=n\).
[concours/ex9746]
[concours/ex8528] tpe MP 2005 Quelles sont les \(A\) de \(\mathscr{M}_n(\mathbf{C})\) vérifiant \(A^3=A\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A=n\) ?
[concours/ex8528]
[concours/ex9979] mines PC 2010 Déterminer les \(A\in\mathscr{M}_n(\mathbf{R})\) telles que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=n\) et \(A^5=A^3\).
[concours/ex9979]
[ev.algebre/ex0288] On note \(u\) l’endomorphisme canoniquement associé à \[A=\left(\begin{array}{ccc}1&0&0\\1&2&0\\1&0&4\end{array}\right)\,.\]
[ev.algebre/ex0288]
Déterminer les droites vectorielles de \(\mathbf{R}^3\) stables par \(u\). En déduire une base relativement à laquelle la matrice de \(u\) est diagonale.
Résoudre dans \(\mathscr{M}_3(\mathbf{R})\) l’équation \(M^2=A\).
[planches/ex3907] centrale PSI 2018
[planches/ex3907]
Résoudre \(M^2=\pmatrix{1&1\cr0&2}\).
Soit \(A\in\mathscr{M}_n(\mathbf{R})\) triangulaire supérieure de diagonale 1, 2, … , \(n\). L’équation \(M^2=A\) admet-elle toujours des solutions ? Si oui, les dénombrer.
Le clic gauche sur un énoncé ou une référence d'exercice rajoute (ou enlève) cet exercice à la liste des exercices sélectionnés