[planches/ex3409] mines MP 2018 Résoudre l’équation \(X^2-2X=A\) dans \(\mathscr{M}_2(\mathbf{R})\), où \(A=\pmatrix{1&2\cr2&1}\).
[planches/ex3409]
[examen/ex0601] imt MP 2023 Soit \(A\in\mathscr{M}_n(\mathbf{C})\) telle que \(4A^3+4A^2+A=0\).
[examen/ex0601]
Étudier la convergence et la limite éventuelle de la suite \((A^k)_{k\in\mathbf{N}}\).
Qu’en déduire sur la matrice \(A\) ?
[concours/ex0919] centrale MP 1997 Soit \(A=\left(\begin{array}{ccc}1&0&0\\0&5&4\\0&0&5\end{array}\right)\). Déterminer les plans stables de \(A\). Résoudre \(X^2=A\).
[concours/ex0919]
[oraux/ex7379] ens paris MP 2013 Déterminer les matrices \(A\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) telles que \(\forall k\in\mathbf{N}^*\), \(\exists M\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{Z})\) : \(M^k=A\).
[oraux/ex7379]
[oraux/ex7183] polytechnique, espci PC 2015 Déterminer les \(n\in\mathbf{N}^*\) pour lesquels il existe \((A,B)\in\mathscr{M}_n(\mathbf{C})^2\) tel que \((AB-BA)^2=I_n\).
[oraux/ex7183]
[concours/ex0165] mines MP 1996 Soit \(A=\left(\begin{array}{ccc}4&5&5\\5&4&5\\ -5&-5&-6\end{array}\right)\). Résoudre \(M^2=A\) dans \(\mathscr{M}_3(\mathbf{R})\).
[concours/ex0165]
[planches/ex9561] polytechnique, espci PC 2023 Soit \(n\geqslant 2\). Si \(A\in\mathscr{M}_n(\mathbf{C})\) est nilpotente, déterminer les valeurs possibles du cardinal de l’ensemble \(\{B\in\mathscr{M}_n(\mathbf{C}),\ A=B^2\}\).
[planches/ex9561]
[planches/ex1986] mines MP 2017
[planches/ex1986]
Déterminer les matrices \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=0\) et \(M(M-I_n)=0\).
Déterminer les matrices \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\) et \(M^n=I_n\).
[concours/ex9887] ccp PSI 2009 Soit \(A=\left(\begin{array}{ccc}0&1&2\\1&0&-2\\2&-2&0\end{array} \right)\in\mathscr{M}_3(\mathbf{R})\).
[concours/ex9887]
Montrer que \(A\) est diagonalisable et que ses sous-espaces propres sont de dimension 1.
Montrer qu’il existe \(M\in\mathscr{M}_3(\mathbf{R})\) tel que \(M^5+M^3+M=A\).
[planches/ex4441] ens paris MP 2019 Soient \(n\in\mathbf{N}^*\) et \((A,B)\in\mathscr{M}_n(\mathbf{R})^2\) tel que \(AB=BA\) et \(A^n=B^n=I_n\). Montrer que si \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(AB)=n\) alors \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(B)\).
[planches/ex4441]
[planches/ex4585] ens PC 2019 Soit \(\alpha\in\mathbf{C}\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^3+X=\pmatrix{1&\alpha\cr\alpha&1}\).
[planches/ex4585]
[concours/ex8647] polytechnique, espci PC 2008 Soit \(n\in\mathbf{N}^*\). Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^n=\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\).
[concours/ex8647]
[planches/ex6218] escp S 2021 Soit \(f\) un endomorphisme de \(\mathbf{R}^3\) dont la matrice dans la base canonique de \(\mathbf{R}^3\) est \(A=\pmatrix{ 1 & 1 &-1\cr -1 & 3 & -3\cr -2 & 2 & -2}\).
[planches/ex6218]
Calculer le rang de \(f\). Déterminer une base de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f)\)
Calculer \(A^2\) et son rang.
Déterminer une base de \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2)\).
Montrer que \(\mathbf{R}^3=\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2) \oplus \mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-2Id)\).
En déduire que \(A\) est semblable à la matrice \(B=\pmatrix{ 0 & 1 &0\cr 0 & 0 & 0\cr 0 & 0 & 2}\).
Dans cette question, on cherche à déterminer les endomorphismes \(g\) de \(\mathbf{R}^3\) tels que \(g^2=f\).
Montrer que si \(g\) est une solution, alors \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f^2)\) et \(\mathop{\mathchoice{\hbox{ker}}{\hbox{ker}}{\mathrm{ker}}{\mathrm{ker}}}\nolimits(f-2Id)\) sont stables par \(g\).
En déduire les solutions de l’équation \(g^2=f\).
[planches/ex4785] polytechnique, espci PC 2019 On pose, pour \(q\in\mathbf{R}^*\), \(A_q=\pmatrix{q&q(q+1)\cr q(q-1)&q}\) et \(A'_q=\displaystyle{A_q\over q^2}\).
[planches/ex4785]
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A_p\) et \(A_q\) soient semblables.
Soit \((p,q)\in(\mathbf{R}^*)^2\) avec \(p\neq q\). Trouver une condition nécessaire et suffisante pour que \(A'_p\) et \(A'_q\) soient semblables.
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) telles que \(B^2=A_q^2\).
Soit \(q\in\mathbf{R}^*\). Trouver les \(B\in\mathscr{M}_2(\mathbf{R})\) semblables à \(A_q\) et telles que \(B^2=A_q^2\).
[oraux/ex7652] polytechnique, espci PC 2015 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) la matrice dont tous les coefficients sont égaux à 1. Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=M\). Montrer que \((\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A)^3=n\).
[oraux/ex7652]
[oraux/ex7047] polytechnique MP 2014 Résoudre l’équation \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(X)=I_n\) dans \(\mathscr{M}_n(\mathbf{R})\).
[oraux/ex7047]
[planches/ex4641] polytechnique MP 2019 Soit \(M\in\mathscr{M}_2(\mathbf{R})\). À quelle condition \(M\) admet-elle une racine carrée dans \(\mathscr{M}_2(\mathbf{R})\) ?
[planches/ex4641]
[oraux/ex0034] ccp PSI 2010 Soit \(A=\left(\begin{array}{ccc}2&3&1\\0&-4&-2\\4&12&5\end{array}\right)\).
[oraux/ex0034]
Diagonaliser \(A\).
Si \(B\in\mathscr{M}_3(\mathbf{C})\) vérifie \(B^2=A\), montrer que \(B\) et \(A\) commutent. Déterminer l’ensemble \(\{B\in\mathscr{M}_3(\mathbf{C}),\ B^2=A\}\).
[concours/ex5511] polytechnique PC 2007 Soient \(A=\left(\begin{array}{ccc}0&0&0\\1&0&0\\1&1&0\end{array}\right)\) et \(B=\left(\begin{array}{ccc}1&0&0\\1&2&0\\1&1&3\end{array}\right)\). Déterminer les \(X\in\mathscr{M}_3(\mathbf{R})\) telles que \(X^2=A\), puis telles que \(X^2=B\).
[concours/ex5511]
[concours/ex9956] mines MP 2010 Soit \(p\) dans \(\mathbf{N}^*\). Trouver les \(M\) de \(\mathscr{M}_n(\mathbf{R})\) telles que : \(M^{p+2}=M\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\).
[concours/ex9956]
Sur les pages de résultats, vous pouvez modifier l'ordre des énoncés