[planches/ex4888] mines MP 2019 Si \(n\in\mathbf{N}^*\), déterminer les \(M\) de \(\mathscr{M}_n(\mathbf{C})\) telles que \(M\) et \(M^2\) soient semblables.
[planches/ex4888]
[examen/ex0740] ccinp PSI 2023 Pour \(A\in\mathscr{M}_n(\mathbf{R})\), on cherche les \(B\in\mathscr{M}_n(\mathbf{R})\) telles que \(B^2=A\) \((*)\).
[examen/ex0740]
Montrer que si \(\mathop{\mathchoice{\hbox{det}}{\hbox{det}}{\mathrm{det}}{\mathrm{det}}}\nolimits(A)<0\), \((*)\) n’a pas de solution.
En déduire une condition nécessaire pour que \((*)\) possède une solution.
Calculer le déterminant de \(A=\pmatrix{2+a&2&1+a\cr3-a&3&3-a\cr-2&-2&-1}\). En déduire une condition nécessaire portant sur \(a\) pour que \((*)\) possède une solution. On suppose par la suite que \(a\geqslant 0\).
Calculer \(\chi_A\) et déterminer les éléments propres de \(A\). On distinguera les cas \(a=1\) et \(a=3\).
Montrer qu’il existe \(P\) inversible et \(D\) diagonale telles que \(A=PDP^{-1}\). On suppose par la suite que \(a\not\in\{1;3\}\).
On suppose qu’il existe \(M\) telle que \(M^2=D\). Montrer que \(MD=DM\).
En déduire toutes les matrices \(M\) telles que \(M^2=D\).
Montrer que \(M^2=D\ \Leftrightarrow\ (PMP^{-1})^2=A\).
En déduire toutes les matrices \(B\) telles que \(B^2=A\).
[concours/ex1800] mines MP 1999 Soit \(A=\left(\begin{array}{cccc} 0&1&0&0\\ -1&0&0&0\\0&0&1&1\\0&0&0&1\end{array}\right)\). Pour \(n\in\mathbf{N}^*\), \(n\geqslant 2\), résoudre \(X^n=A\) dans \(\mathscr{M}_4(\mathbf{C})\), puis dans \(\mathscr{M}_4(\mathbf{R})\).
[concours/ex1800]
[concours/ex1792] mines MP 1999 Résoudre \(X^n=\left(\begin{array}{cccc} 2&0&0&0\\0&1&1&0\\0&0&1&1\\0&0&0&1\end{array}\right)\) lorsque \(X\) est une matrice carrée complexe. Quelles sont les solutions réelles ?
[concours/ex1792]
[concours/ex9597] centrale MP 2006 Soit \(A\in\mathscr{M}_n(\mathbf{R})\). On étudie l’équation : \(M^2=A\) \((*)\) d’inconnue \(M\in\mathscr{M}_n(\mathbf{R})\).
[concours/ex9597]
Pour \(n=2\), trouver \(A\) telle que \((*)\) admette \((1)\) aucune solution ; \((2)\) un ensemble fini non vide de solutions ; \((3)\) une infinité de solutions.
Pour \(n=3\), résoudre \((*)\) avec \(A=\left(\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right)\), puis avec \(A=\left(\begin{array}{ccc}2&0&0\\1&2&1\\0&1&3\end{array}\right)\).
Étudier l’équation \((*)\) dans le cas où le polynôme caractéristique \(\chi\) de \(A\) est scindé sur \(\mathbf{R}\) et à racines simples et strictement positives.
Étudier l’équation \((*)\) dans le cas où \(\chi\) est scindé sur \(\mathbf{R}\) et à racines simples et positives.
Étudier l’équation \((*)\) dans le cas où \(\chi\) est scindé sur \(\mathbf{R}\) et à racines simples et non toutes positives.
Résoudre dans \(\mathscr{M}_n(\mathbf{C})\) l’équation \(M^n=I_n\).
[oraux/ex7652] polytechnique, espci PC 2015 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) la matrice dont tous les coefficients sont égaux à 1. Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=M\). Montrer que \((\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A)^3=n\).
[oraux/ex7652]
[concours/ex9918] polytechnique MP 2010 Pour \(n\in\mathbf{N}^*\), on note \(J_n\) la matrice de \(\mathscr{M}_n(\mathbf{C})\) dont tous les coefficients sont égaux à 1.
[concours/ex9918]
Résoudre \(X^2+X=J_2\) dans \(\mathscr{M}_2(\mathbf{C})\).
Soit \(P\in\mathbf{C}[X]\) non constant. Résoudre \(P(X)=J_n\) dans \(\mathscr{M}_n(\mathbf{C})\).
Résoudre \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(X)=J_2\) dans \(\mathscr{M}_2(\mathbf{C})\).
[concours/ex9671] polytechnique, espci PC 2008
[concours/ex9671]
Montrer qu’une matrice \(A\in\mathscr{M}_2(\mathbf{C})\) non diagonalisable est de la forme \(aI_2+N\) où \(a\in\mathbf{C}\) et \(N\) est nilpotente non nulle.
Soit \(n\in\mathbf{N}\). Déterminer les \(X\in\mathscr{M}_2(\mathbf{C})\) tels que \(X^n=\left(\begin{array}{cc}2&-1\\1&0\end{array}\right)\).
[planches/ex2803] imt PC 2017 À quelles conditions sur \(a\), \(b\in\mathbf{R}\) existe-t-il une matrice \(M\in\mathscr{M}_n(\mathbf{R})\) inversible telle que \(M^2+aM+bI_n=0_n\) ?
[planches/ex2803]
[concours/ex2152] polytechnique M 1995 Soit \[E=\left\{\left(\begin{array}{ccc}a&b&c\\c&a&b\\b&c&a\end{array}\right) \in\mathscr{M}_3(\mathbf{R})\right\}.\] Déterminer toutes les matrices de \(E\) telles que \(M^2=I_3\). Interprétation géométrique de ces matrices.
[concours/ex2152]
Vous pouvez choisir la typographie des énoncés : HTML (MathJax, plus joli) ou sous forme d'image (GIF, plus rapide)