[concours/ex9906] ens lyon PC 2010 Trouver tous les couples \((A,B)\in\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{R})^2\) tels que \(B^2=ABA^{-1}\).
[concours/ex9906]
[examen/ex1069] ens saclay, ens rennes MP 2024 Montrer que toute matrice de \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_n(\mathbf{C})\) admet une racine carrée.
[examen/ex1069]
[examen/ex1214] ens PC 2024 Soit \(M\in\mathscr{M}_n(\mathbf{R})\) telle que \(M^3=0\). Montrer qu’il existe une unique matrice \(X\in\mathscr{M}_n(\mathbf{R})\) telle que \(X+MX+XM^2=M\).
[examen/ex1214]
[concours/ex9671] polytechnique, espci PC 2008
[concours/ex9671]
Montrer qu’une matrice \(A\in\mathscr{M}_2(\mathbf{C})\) non diagonalisable est de la forme \(aI_2+N\) où \(a\in\mathbf{C}\) et \(N\) est nilpotente non nulle.
Soit \(n\in\mathbf{N}\). Déterminer les \(X\in\mathscr{M}_2(\mathbf{C})\) tels que \(X^n=\left(\begin{array}{cc}2&-1\\1&0\end{array}\right)\).
[examen/ex0808] ccinp PC 2023 Soit \(A=\pmatrix{5&1\cr3&3}\). On cherche à résoudre l’équation \(M^2+M=A\), d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[examen/ex0808]
Résoudre dans \(\mathbf{R}\) les équations \(x^2+x-2=0\) et \(x^2-x-6=0\).
Déterminer les valeurs propres de \(A\) et les sous-espaces propres associés. La matrice \(A\) est-elle diagonalisable ?
Soit \(M\in\mathscr{M}_2(\mathbf{R})\) telle que \(M^2+M=A\).
Soit \(X\in\mathscr{M}_{2,1}(\mathbf{R})\) un vecteur propre de \(M\) associé à la valeur propre \(\lambda\). Montrer que \(X\) est un vecteur propre de \(A\) et que \(\lambda\in\{-3,-2,1,3\}\).
Montrer que \(A\) et \(M\) commutent. En déduire que tout vecteur propre de \(A\) est un vecteur propre de \(M\).
Montrer que \(M\) n’a que des valeurs propres simples (on pourra raisonner par l’absurde) et en déduire que \(M\) est diagonalisable.
Résoudre l’équation \(M^2+M=A\), d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[planches/ex9562] polytechnique, espci PC 2023 Trouver les matrices \(A\) de \(\mathscr{M}_2(\mathbf{C})\) telles que \(A^p=A\), où \(p\) est un entier \({}\geqslant 2\).
[planches/ex9562]
[planches/ex1986] mines MP 2017
[planches/ex1986]
Déterminer les matrices \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=0\) et \(M(M-I_n)=0\).
Déterminer les matrices \(M\in\mathscr{M}_n(\mathbf{C})\) telles que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=n\) et \(M^n=I_n\).
[concours/ex9751] ensea PSI 2008 Trouver les \(M\in\mathscr{M}_n(\mathbf{R})\) telles que \(2M+M^2+3M^3=0\) et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(M)=0\).
[concours/ex9751]
[concours/ex9773] ens paris, ens lyon, ens cachan MP 2009 Soient \(A\), \(B\in\mathscr{M}_2(\mathbf{C})\) avec \(\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(A)=\mathop{\mathchoice{\hbox{exp}}{\hbox{exp}}{\mathrm{exp}}{\mathrm{exp}}}\nolimits(B)\). On suppose que si \(a\) est une valeur propre de \(A\) et \(b\) une valeur propre de \(B\) alors \(b-a\not\in2i\pi\mathbf{Z}\setminus\{0\}\). Montrer que \(A=B\).
[concours/ex9773]
[oraux/ex4604] escp S 2011 Soit \(A=\left(\begin{array}{ccc}2 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2\end{array}\right)\) et \(J=\left(\begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\end{array}\right)\).
[oraux/ex4604]
On note respectivement \(a\) et \(j\) les endomorphismes de \(\mathbf{R}^3\) canoniquement associés aux matrices \(A\) et \(J\).
Calculer \(J^n\) pour tout \(n\) de \(\mathbf{N}\).
En déduire que \(A^n= I +\displaystyle{4^n-1\over3} J\), où \(I\) désigne la matrice identité d’ordre \(3\).
Montrer que \(a\) admet deux valeurs propres réelles \(\lambda\) et \(\mu\) avec \(\lambda <\mu\).
Montrer qu’il existe un unique couple \((p,q)\) d’endomorphismes de \(\mathbf{R}^3\), tel que pour tout \(n\) de \(\mathbf{N}\) : \(a^n =\lambda^np+\mu^nq\).
Montrer que \(p\) et \(q\) sont deux projecteurs vérifiant \(p\mathbin{\circ} q=q\mathbin{\circ} p=0\).
Déterminer les endomorphismes \(h\) de \(\mathbf{R}^3\), combinaisons linéaires de \(p\) et \(q\) tels que \(h^2=h\mathbin{\circ} h=a\).
Montrer qu’il existe un endomorphisme \(h\) de \(\mathbf{R}^3\) qui n’est pas combinaison linéaire de \(p\) et \(q\) et qui est tel que \(h^2=a\).
Vous pouvez limiter le nombre de résultats d'une requête, pour en accélérer l'affichage