[planches/ex4784] polytechnique, espci PC 2019 Soit \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^3=-A\). Montrer que \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits(A)=0\).
[planches/ex4784]
[concours/ex0165] mines MP 1996 Soit \(A=\left(\begin{array}{ccc}4&5&5\\5&4&5\\ -5&-5&-6\end{array}\right)\). Résoudre \(M^2=A\) dans \(\mathscr{M}_3(\mathbf{R})\).
[concours/ex0165]
[concours/ex5511] polytechnique PC 2007 Soient \(A=\left(\begin{array}{ccc}0&0&0\\1&0&0\\1&1&0\end{array}\right)\) et \(B=\left(\begin{array}{ccc}1&0&0\\1&2&0\\1&1&3\end{array}\right)\). Déterminer les \(X\in\mathscr{M}_3(\mathbf{R})\) telles que \(X^2=A\), puis telles que \(X^2=B\).
[concours/ex5511]
[planches/ex8723] centrale PC 2022 Soit \(\theta\in\left]0,\pi\right[\).
[planches/ex8723]
Montrer que toute solution de \(A^2-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta)A+I_2=0\) dans \(\mathscr{M}_2(\mathbf{R})\) est semblable à \(R=\pmatrix{\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta&-\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta\cr\mathop{\mathchoice{\hbox{sin}}{\hbox{sin}}{\mathrm{sin}}{\mathrm{sin}}}\nolimits\theta&\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits\theta}\).
Soient \(n\in\mathbf{N}^*\) et \(A\in\mathscr{M}_n(\mathbf{R})\) telle que \(A^2-2\mathop{\mathchoice{\hbox{cos}}{\hbox{cos}}{\mathrm{cos}}{\mathrm{cos}}}\nolimits(\theta)A+I_n=0\). Montrer que \(n\) est pair et que \(A\) est semblable à une matrice diagonale par blocs dont tous les blocs diagonaux sont égaux à \(R\).
[concours/ex6066] centrale PSI 2007 On se place sur \(K=\mathbf{R}\) ou \(\mathbf{C}\). On s’intéresse à l’équation matricielle \(AX-XA=A\) où \(A\), \(X\) sont dans \(\mathscr{M}_n(K)\).
[concours/ex6066]
Résoudre l’équation lorsque \(A=\left(\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right)\).
On revient au cas général. Si \(AM-MA=A\) que peut-on dire de \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits A\) ? Calculer \(A^pM-MA^p\) pour tout \(p\in\mathbf{N}\). Que dire des polynômes annulateurs de \(A\) ?
On suppose \(A\) nilpotente d’indice \(n\) et on note \(f\) l’endomorphisme canoniquement associé.
Montrer qu’il existe \(x\in K^n\) tel que \((x,f(x),\ldots,f^{n-1}(x))\) soit une base de \(K^n\). En déduire les endomorphismes \(g\) tels que \(f\mathbin{\circ} g-g\mathbin{\circ} f=f\).
[planches/ex5675] ccinp PC 2019 Soient \(A=\pmatrix{7&-6\cr3&-2}\) et \(\Delta=\pmatrix{1&0\cr0&4}\).
[planches/ex5675]
Soit \(X\in\mathscr{M}_2(\mathbf{R})\) telle que \(X^2=\Delta\). Montrer que \(X\) et \(\Delta\) commutent puis que \(X\) est diagonale.
Résoudre l’équation \(M^2=A\) d’inconnue \(M\in\mathscr{M}_2(\mathbf{R})\).
[planches/ex9561] polytechnique, espci PC 2023 Soit \(n\geqslant 2\). Si \(A\in\mathscr{M}_n(\mathbf{C})\) est nilpotente, déterminer les valeurs possibles du cardinal de l’ensemble \(\{B\in\mathscr{M}_n(\mathbf{C}),\ A=B^2\}\).
[planches/ex9561]
[concours/ex3831] ensi M 1992 Déterminer toutes les matrices \(M\in\mathscr{M}_3(K)\) telles que \(M^2=0\).
[concours/ex3831]
[planches/ex9562] polytechnique, espci PC 2023 Trouver les matrices \(A\) de \(\mathscr{M}_2(\mathbf{C})\) telles que \(A^p=A\), où \(p\) est un entier \({}\geqslant 2\).
[planches/ex9562]
[oraux/ex7574] mines MP 2014 Existe-t-il \(M\in\mathscr{M}_4(\mathbf{Q})\) dont \(\sqrt2\) et \(\sqrt3\) est valeur propre et \(\mathop{\mathchoice{\hbox{tr}}{\hbox{tr}}{\mathrm{tr}}{\mathrm{tr}}}\nolimits M=1\) ?
[oraux/ex7574]
Vous pouvez choisir les informations imprimées pour chaque exercice des PDF : référence interne, taille de la famille