[planches/ex2699] imt PSI 2017 Soit \(A=\pmatrix{1&2&3\cr0&1&2\cr0&0&1}\).
[planches/ex2699]
Soit \(X\) une matrice telle que \(X^2=A\). Montrer que \(X\) et \(A\) commutent, puis que \(X\) est triangulaire supérieure.
Trouver toutes les matrices \(X\) telles que \(X^2=A\).
[concours/ex0403] centrale MP 1996 On considère le système : \[\left\{\begin{array}{rcl} XY+YX &=& 0\\ X^2 &=& 0\\ Y^2 &=& 0\\ XY &\neq& 0 \end{array}\right.\quad\hbox{avec}\quad(X,Y)\in\mathscr{M}_n(\mathbf{R})^2\,.\]
[concours/ex0403]
Montrer que, pour \(n=2\), le système n’a pas de solution.
Montrer que, pour \(n=2r\) (avec \(r\geqslant 2\)), il y a une solution telle que \(\mathop{\mathchoice{\hbox{rg}}{\hbox{rg}}{\mathrm{rg}}{\mathrm{rg}}}\nolimits X=r\).
Étudier le cas où \(n\) est impair.
[concours/ex4357] hec E 2006 Soit \(A\) la matrice de \(\mathscr{M}_3(\mathbf{R})\) définie par : \(A=\left(\begin{array}{ccc}0&1&1\\1&0&1\\0&0&1\end{array}\right)\).
[concours/ex4357]
La matrice \(A\) est-elle diagonalisable ? La matrice \(A\) est-elle inversible ?
Déterminer tous les entiers naturels \(p\) et \(q\) tels que \(A^{2p+1}=A^{2q}\).
Existe-t-il un entier \(n\) de \(\mathbf{N}\) tel que \(M^n=A\) si :
\(M=\left(\begin{array}{ccc}0&1&2\\1&1&1\\1&2&3\end{array}\right)\)
\(M=\left(\begin{array}{ccc}0&1&0\\1&-1&1\\0&1&1\end{array}\right)\) ?
[oraux/ex7755] mines MP 2016 Résoudre dans \(\mathscr{M}_2(\mathbf{Z}/5\mathbf{Z})\) : \(M^2=\pmatrix{\overline4&\overline2\cr\overline4&\overline1}\).
[oraux/ex7755]
[oraux/ex7088] mines MP 2014 Soit \(J=\pmatrix{0&0&1\cr0&1&0\cr1&0&0}\) et \(K=\pmatrix{0&1&0\cr1&0&1\cr0&1&0}\). Déterminer tous les polynômes \(P\) de \(\mathbf{C}[X]\) tels que \(P(J)=K\).
[oraux/ex7088]
Vous pouvez paramétrer ce qui s'affiche lorsque vous survolez un énoncé, voire ne rien afficher