[concours/ex8481] mines PC 2005 Trouver les matrices \(A\) de \(\mathscr{M}_5(\mathbf{R})\) telles que : \(A=A^2-I_5\).
[concours/ex8481]
[concours/ex8989] tpe MP 2010 Déterminer les matrices \(A\) de \(\mathscr{M}_n(\mathbf{Z}/7\mathbf{Z})\) telles que \(A^3=I_n\).
[concours/ex8989]
[concours/ex8412] ens paris, ens lyon, ens cachan MP 2005 Soient \(A\), \(B\), \(C\) dans \(\mathscr{M}_n(K)\). Donner une condition nécessaire et suffisante pour qu’il existe \(X\) dans \(\mathscr{M}_n(K)\) tel que \(C=AXB\).
[concours/ex8412]
[planches/ex2699] imt PSI 2017 Soit \(A=\pmatrix{1&2&3\cr0&1&2\cr0&0&1}\).
[planches/ex2699]
Soit \(X\) une matrice telle que \(X^2=A\). Montrer que \(X\) et \(A\) commutent, puis que \(X\) est triangulaire supérieure.
Trouver toutes les matrices \(X\) telles que \(X^2=A\).
[concours/ex3831] ensi M 1992 Déterminer toutes les matrices \(M\in\mathscr{M}_3(K)\) telles que \(M^2=0\).
[concours/ex3831]
[oraux/ex7130] centrale PSI 2014 Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) l’équation : \(X^2+X=\pmatrix{1&2\cr2&1}\).
[oraux/ex7130]
[planches/ex9170] ens lyon MP 2023 Soient \(a\), \(b\), \(m\), \(p\) des entiers naturels tels que \(a^2+b^2-pm=-1\).
[planches/ex9170]
On pose \(A=\pmatrix{p&a+ib\cr a-ib&m}\). Montrer qu’il existe \(B\in \mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Q}(i))\) telle que \(A=B^*B\) où \(B^*=\bar{B}^T\). Même question avec \(B\) dans \(\mathop{\mathchoice{\hbox{GL}}{\hbox{GL}}{\mathrm{GL}}{\mathrm{GL}}}\nolimits_2(\mathbf{Z}[i])\).
[ev.algebre/ex1245] Trouver toutes les matrices carrées réelles telles que \(A^2=B\), où \[B=\left(\begin{array}{cc} 1&4\\0&-9 \end{array}\right).\]
[ev.algebre/ex1245]
[oraux/ex7316] polytechnique, espci PC 2016 Soit \(P\in\mathscr{M}_n(\mathbf{R})\) une matrice non nulle à coefficients dans \(\mathbf{Z}\) et \(M=I_n+3P\). Montrer que \(M^3\neq I_n\). Plus généralement, montrer, pour \(k\in\mathbf{N}\), que \(M^{3^k}\neq I_n\).
[oraux/ex7316]
[oraux/ex6891] polytechnique MP 2013 Soient \(A\) et \(B\) dans \(\mathscr{M}_n(\mathbf{C})\) telles que \(AB^5-B^3AB^2=B\). Montrer que \(B=0\).
[oraux/ex6891]
Vous pouvez désactiver ou réduire la fréquence d'affichage de ces fenêtres d'astuces