[concours/ex5508] polytechnique PC 2007 Soit \(A=\left(\begin{array}{cccc}1&1&1&1\\0&1&1&1\\0&0&1&1\\0&0&0&1\end{array} \right)\).
[concours/ex5508]
Calculer \(A^n\) pour \(n\in\mathbf{N}\), puis \(n\in\mathbf{Z}\).
Trouver \(B\in\mathscr{M}_4(\mathbf{R})\) telle que \(B^2=A\).
[concours/ex5903] centrale MP 2007 Soient \(n\in\mathbf{N}\) avec \(n\geqslant 2\) et \(M=(m_{i,j})_{1\leqslant i,j\leqslant n}\) où, \(\forall i\in\{1,\ldots,n-1\}\), \(m_{i+1,i}=1\), les autres coefficients étant nuls. Résoudre dans \(\mathscr{M}_n(\mathbf{R})\) : \(A^2=M\).
[concours/ex5903]
[planches/ex3330] polytechnique, espci PC 2018 Existe-t-il \(B\in\mathscr{M}_2(\mathbf{R})\) telle que \(B^2=\pmatrix{0&1\cr0&0}\) ?
[planches/ex3330]
[concours/ex6714] escp S 2008 L’équation matricielle \(X^2=\left(\begin{array}{cc}0&1\\ 0&0\end{array}\right)\) a-t-elle des solutions dans \({\cal M}_2(\mathbb{C})\) ? Donner un exemple non trivial d’une matrice nilpotente telle que l’équation matricielle \(X^2=A\) possède des solutions.
[concours/ex6714]
[concours/ex8624] polytechnique, ens cachan PSI 2008
[concours/ex8624]
Résoudre dans \(\mathscr{M}_2(\mathbf{C})\) : \(X^2=J\) où \(J=\left(\begin{array}{cc}0&1\\0&0\end{array}\right)\).
Résoudre dans \(\mathscr{M}_4(\mathbf{C})\) : \(X^2=\left(\begin{array}{c|c} J&0\\\hline0&J\end{array}\right)\).
Vous pouvez choisir d'afficher ou non des icônes pour savoir si les exercices possèdent une solution